AC Item No.

UNIVERSITY OF MUMBAI Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under FACULTY OF TECHNOLOGY **Instrumentation Engineering** Second Year with Effect from AY 2017-18 Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20 As per Choice Based Credit and Grading System with effect from the AY 2016–17

From Co-coordinator's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated, and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai, has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's), course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of Studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enable a much-required shift in focus from teacher-centric to learner-centric education. Since the workload estimated is based on the investment of time in learning, not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes. Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. **Choice Based Credit and Grading System** were implemented for First Year of Engineering (Undergraduate) from the academic year 2016-2017. Subsequently this system will be carried forward for Second Year of Engineering (Undergraduate) in the academic year 2017-2018 and so on.

Dr. Suresh K. Ukarande Coordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

Preamble:

The overall technical education in our country is changing rapidly in manifolds. Now it is very much challenging to maintain the quality of education with its rate of expansion. To meet present requirement a systematic approach is necessary to build the strong technical base with the quality. Accreditation will provide the quality assurance in higher education and to achieve recognition of the institution or program meeting certain specified standards. The main-focus of an accreditation process is to measure the program outcomes, essentially a range of skills and knowledge that a student will have at the time of graduation from the program that is being accredited. Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as a Chairman, Board of Studies in Instrumentation Engineering of University of Mumbai, happy to state here that, Program Educational Objectives (PEOs) were finalized for undergraduate program in Instrumentation Engineering, more than ten senior faculty members from the different institutes affiliated to University of Mumbai were actively participated in this process. Few PEOs and POs of undergraduate program in Instrumentation Engineering are listed below;

Program Educational Objectives (PEOs)

- Graduates will have successful career in industry or pursue higher studies to meet future challenges of technological development.
- Graduates will develop analytical and logical skills that enable them to analyze and design Instrumentation and Control Systems.
- Graduates will achieve professional skills to expose themselves by giving an opportunity as an individual as well as team.
- *Graduates will undertake research activities in emerging multidisciplinary fields.*

Program Outcomes (POs)

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Dr. S. R. Deore, Chairman, Board of Studies in Electrical Engineering, Member - Academic Council University of Mumbai

Program Structure for SE Instrumentation Engineering University of Mumbai (With Effect from 2017-18)

Scheme for Semester IV

Course Code	Course Name		ching Sch ontact Ho			Credits A	ssigned	
		Theory	Practic al	Tutorial	Theory	Practical	Tutorial	Total
ISC401	Applied Mathematics – IV	4	-	1	4	-	1	5
ISC402	Transducers –II	4	-	-	4	-	-	4
ISC403	Feedback Control system	4	-	-	4	-	-	4
ISC404	Analytical Instrumentation	3	-	-	3	-	-	3
ISC405	Signal Conditioning Circuit Design	4	-	-	4	-	-	4
ISL401	Application Software Practice	-	4#	-	-	2	-	2
ISL402	Transducer-II Lab Practice	-	2	-	-	1	-	1
ISL403	Feedback Control systems Lab Practice	-	2	-	-	1	-	1
ISL404	Analytical Instrumentation Lab Practice	-	2	-	-	1	-	1
ISL405	Signal Conditioning Circuit Design Lab Practice	-	2	-	-	1	-	1
	Total	19	12	01	19 06 01 26			26

Out of four hours, 2 hours theory shall be taught to entire class and 2 hours practical in batches

			Exam	ination Scl	heme		
		Th	eory				
Course Code	Course Name	End sem Exam (ESE)	Internal Assessment (IA)	Term Work	Oral	Pract./ Oral	Total Marks
		Max Marks	Max Marks	Max Marks	Max Marks	Max Marks	
ISC401	Applied Mathematics – IV	80	20	25	-	-	125
ISC402	Transducers –II	80	20	-	-	-	100
ISC403	Feedback Control System	80	20	-	-	-	100
ISC404	Analytical Instrumentation	80	20	-	-	-	100
ISC405	Signal Conditioning Circuit Design	80	20	-	-	-	100
ISL401	Application Software Practice	-	-	50	-	25	75
ISL402	Transducer-II Lab Practice	-	-	25	-	25	50
ISL403	Feedback Control Systems Lab Practice	-	-	25	25	-	50
ISL404	Analytical Instrumentation Lab Practice	-	-	25	25		50
ISL405	Signal Conditioning Circuit Design Lab Practice	-	-	25	-	25	50
	Total	400	100	175	50	75	800

Note: As per above Examination Scheme, the Minimum marks are as follows -

Max. Marks	Min. marks
80	32
50	20
25	10
20	8

Subject Code	Subject Name	Tea	ching Scher					
ISC401	Applied Mathematics	Theory	Practical	Tutori al	Theory Practical Tutorial Total			Total
	- IV	04		01	04 01 0			05

G L	Subject				Examinat	tion Sche	me		
Subject Code	Name	Theory Marks				Pract.	Oral	Total	
Code		Test 1	Test 2	Avg.	End Sem	Term			
				_	Exam	Work			
ISC401	Applied Mathematics	20	20	20	80	25			125
	Mathematics - IV								

Subject Code	Subject Name	credits
ISC401	Applied Mathematics - IV	5
Course Objectives	1. To develop analytical insight of the student to prep graduate's studies in Instrumentation Engineering	are them for
	2. To enhance their ability to solve and analyse engineering	problem.
	3. To provide students with a strong mathematical foundation the professional competence knowledge and skills.	ion to acquire
Course Outcomes	The students will be able to:	
	1. Check the given set of vectors is the vector space.	
	2. Find eigenvalues and eigenvectors of matrix and can di matrix.	agonalize the
	3. Find the probability distribution, expectation, variance for the given data.	and moments
	4. Use binomial distribution and Poisson distribution distribution for the data for required probability.	and normal
	5. Apply Cauchy's integral formula and theorem and residues solve the integral problem.	ue theorem to
	6. Find the correlation coefficients and rank correlation co lines regression between the two data.	efficients and

Details of syllabus:

Pre-requisites:

Basics of Complex numbers, Analytic Function, Matrices, Symmetric, Orthogonal and Unitary matrices, Rank, Normal form, Solution of system of linear equations, L. I. & L. D. vectors, Basics of Probability.

Module	Contents	Hrs.	CO mapping
1	Linear Algebra: Vector Spaces Vectors in n-dimensional vector space: properties, dot product, cross product, norm and distance properties in n-dimensional vector space. Vector spaces over real field, properties of vector spaces over real field, subspaces. The Cauchy-Schwarz inequality, Orthogonal Subspaces, Gram-	06	COI
2	Schmidt process.Linear Algebra: Vector Matrix TheoryCharacteristic equation, Eigen values and Eigen vectors, propertiesof Eigen values and Eigen vectorsCayley-Hamilton theorem, examples based on verification ofCayley- Hamilton theorem.Similarity of matrices, Diagonalisation of matrices.Functions of square matrix, derogatory and non-derogatorymatrices.	10	CO2
3	Random VariablesDiscrete & continuous random variables, expectation, Variance,Probability mass function and Density Function, Probabilitydistribution for random variablesMoments, Moment Generating Function.Functions of one random variable and their distribution and densityfunctions	10	CO3
4	Probability distribution Probability distribution: Binomial distribution, Poisson & normal distribution (For detailed study)	6	CO4
5	Complex integrationComplex Integration: Line Integral, Cauchy's Integral theorem forsimply connected regions, Cauchy's Integral formula.Taylor's and Laurent's SeriesZeros, singularities, poles of f(z), residues, Cauchy's Residuetheorem.Applications of Residue theorem to evaluate real Integrals ofdifferent types.	12	CO5
6	Correlation & Regression Karl Pearson's coefficient of correlation, covariance, Spearman's Rank correlation. Lines of Regression.	4	CO6

Text Books:

- 1. Higher Engineering Mathematics by Dr. B. S. Grewal 42th edition, Khanna Publication.
- 2. Advanced Engineering Mathematics by Kreyszig E. 9th edition, John Wiley.

Reference Books:

University of Mumbai, Instrumentation Engineering, Rev 2016-17

- A Text Book of Applied Mathematics Vol. II by P. N. Wartilar & J. N. Wartikar, Pune, Vidyarthi Griha Prakashan., Pune.
- 2. Advanced Engineering Mathematics by C. Ray Wylie & Louis Barrett. TMH International Edition.
- 3. Mathematical Methods of Science and Engineering by Kanti B. Datta, Cengage Learning.
- Theory and Problems of Statistics by Murry R. Spieget, Schaum's outline series-McGraw Hill Publication.

Subject code	Subject Name	Teaching	Teaching scheme			Credit assigned			
ISC402	Transducer	Theory	Theory Pract. Tut.		Theory	Pract.	Tut.	Total	
	- II	4	-	-	4	-	-	4	

Sub	Subject	Examin	Examination scheme						
Code	Name	Theory	Theory (out of 100) Terr					Oral	Total
		Internal	Internal Assessment End Sem			work	and		
		Test1	Test1 Test2 Avg. Exam				Oral		
ISC402	Transducer -	20	20	20	80	-	-	-	100
	II								

Subject Code	Subject Name	credits
ISC402	Transducer II	4
Course Objectives	1. To make students understand the construction, working	principle
	and application of various transducers used for flow	
	measurement, strain measurement, pressure and vacuum	n
	measurement, force, torque and power measurement	
	2. To study electro-chemical sensors and transducers used	for
	density and viscosity measurement	
Course Outcomes	The course would enable the students to:	
	1. Explain working principle of strain gauges.	
	2. Explain working principle of pressure transducers	
	3. Learn transducers for vacuum measurement.	
	4. Identify types of flow and use different transducers for measurement.	flow
	5. Explain the terminologies of electrochemical sensors ar applications in industry.	nd their
	6. Identify sensors for power, density, humidity, pH measure	urement.

Details of Syllabus:

Prerequisite: Knowledge of basic measurement techniques

Module	Contents	Hrs.	CO mapping
1	Strain Measurement Introduction, types of strain gauge, gauge factor calculation, materials for strain gauge, resistance strain gauge bridges, temperature compensation and applications of strain gauges	04	CO1
2	 Pressure Measurement Pressure scales, units and relations, classification Primary pressure sensors - elastic elements like bourdon tube, diaphragm, bellows, properties and selection of elastic materials, Calibration using dead weight tester. Electrical/Secondary Pressure Transducers: Capacitive, piezo-electric and its material, variable reluctance, LVDT, strain gauge. High Pressure Measurement: Bulk modulus cell, Bridgeman type, capsule. 	12	CO2

	Differential pressure measurement : Force balance, motion balance, DP Cell, semiconductor strain gauges.		
	Pressure measurement using manometer : U-tube types, well type, inclined type, micro manometer		
3	Vacuum Measurement Units and relations, McLeod gauge, Pirani gauge, thermocouple gauge, hot and cold cathode ionization gauge, Knudsen gauge	04	CO3
4	 Flow Measurement Introduction to fluid flow: properties of fluid, types of fluid, dimensionless numbers, types of fluid flow, continuity equation, Bernoulli's equation, hydrostatic law, Pascal's law, flow through pipes – major and minor losses, flow measurement through open channel-weirs and notches. Materials used for flow sensors, performance of materials, corrosion resistors, erosion, effect of vapour pressure Head Type: orifice, venturi, nozzle, pitot tube, annubar, characteristics of head type flow meters. Variable Area Type: Rotameter Velocity and Inertia based flowmeters: Turbine, electromagnetic, ultrasonic, positive displacement, anemometers, mass flow meters, solid flow measurements 	16	CO4
5	Electro-chemical Sensors Terminology, equations, units. pH measurement-electrodes, measuring circuits, maintenance, temperature compensation, calibration. Conductivity measurement-probes and measuring circuits	04	CO5
6	Miscellaneous MeasurementForce Measurement: strain gauge, LVDT, piezoelectric.Torque: Torsion bar, strain gauge.Power: Dynamometer, instantaneous power measurement,alternator power measurement.Density Measurement – Displacement and float typedensitometersHydrometers, Radiation and Ultrasonic densitometersViscosity Measurement – Capillary tube viscometer, Effluxtype viscometer, Variable area viscometerIntroduction to Advances in sensors technology: Smart sensors,MEMS, Nano sensors, Semiconductor sensors, Optical fibersensors.	08	CO6

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.

University of Mumbai, Instrumentation Engineering, Rev 2016-17

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Nakra B.C., Chaudhary K.K., Instrumentation Measurement and Analysis, Tata Mc Graw Hill.
- 2. Sawhney A.K., Electrical and Electronic Measurement and Instrumentation, Dhanpatrai And Co.
- 3. Rangan, Mani, Sarma, "Instrumentation Systems and Devices", 2nd ed., Tata Mc Graw Hill.

Reference Books:

- 1. Doeblin E.D., "Measurement system", Tata Mc Graw Hill., 4th ed, 2003
- 2. Liptak B.G., "Instrument engineer's handbook Process measurement and analysis".
- 3. Douglas M. Considine, "Process Instruments and controls", Handbook, Mc Graw Hill.
- 4. Curtis Johnson, "Process Control Instrumentation Technology", 8th ed, 2005
- 5. Andrew Williams, "Applied Instrumentation in process industry", Vol-I, Gulf publishing company.
- 6. Bansal R.K., "Fluid Mechanics and Hydraulic Machines", Laxmi publications.
- 7. David W. Spitzer, "Industrial Flow Measurement", ISA Publication.
- 8. Sawhney A.K., "Mechanical Measurement", Dhanpatrai And Co.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISC403	Feedback Control	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	System	4	-	-	4	-	-	4

Sub	Subject Name	Examin	Examination scheme						
Code		Theory	Theory (out of 100)				Pract.	Oral	Total
		Internal Assessment End Sem			work	and			
		Test1	Test2	Avg.	Exam		Oral		
ISC403	Feedback	20	20	20	80	-	-	-	100
	Control System								

Subject Code	Subject Name	Credits								
ISC403	Feedback Control System	4								
Course	1. The students should be able to learn the type of System, dynamics of	physical								
Objectives	systems, classification of control system, analysis and design objective.									
	2. The students should learn how to represent system by transfer function a	The students should learn how to represent system by transfer function and block								
	diagram reduction method and Mason's gain formula.									
	3. The students should able to learn time response analysis and demonstr	ate their								
	knowledge to frequency response.									
	4. Students can be able to learn stability analysis of system using Root locus	, bode								
	plot, polar plot, and Nyquist plot.	, ,								
Course	Students will be able to -									
Outcomes	1. Identify open and closed loop control system									
	2. Formulate mathematical model for physical systems.									
	3. Simplify representation of complex systems using reduction technic	ques.								
	4. Use standard test signals to identify performance characteristics of	of first and								
	second-order systems.									
	5. Apply root locus technique for stability analysis.									
	6. Analyze performance characteristics of system using Frequency resp	oonse								
	methods.									

Details of Syllabus:

Prerequisite: Knowledge of Laplace and Inverse Laplace Transform.

Module	Contents	Hrs	СО
			mapping
1	Introduction	4	CO1
	Definition of control system and related terms, open loop and closed		
	loop system, examples. Development of automatic control systems,		
	classification of control system, examples		
2	Mathematical Models of	8	CO2
	Physical Systems		
	Definition of physical systems, principle of superposition and		
	homogeneity, linear/non-linear, time variant/time invariant		
	systems. Types of dynamic model, linear elements of electrical		
	and mechanical systems, differential equations of physical		
	systems-mechanical systems, electrical systems – RLC series,		
	parallel circuits, Analogous systems.		

University of Mumbai, Instrumentation Engineering, Rev 2016-17

3	Transfer Function and Feedback Characteristics	10	CO3
-	Definition of transfer function, sinusoidal transfer function, transfer	-	
	functions of physical systems, block diagram algebra, reduction		
	rules, signal flow graphs-definition, construction, properties, and		
	Mason's gain formula, sensitivity of closed loop and open loop		
	systems, effect of feedback, effect of disturbances signals,		
	regenerative feedback with examples		
4	Time Response Analysis	10	CO4
	Standard test signals, pulse and impulse function, step function,		
	ramp function, parabolic function, sinusoidal function, dynamic		
	response, time response of first order system, time response of		
	second order system, specifications, steady -state error, system		
	types and error constants, design specifications of second order		
	system-desired closed loop pole location and the dominant closed		
	loop pole concept. Time response analysis of electrical RLC circuits		
	- first and second order differential equations, steady-state, and		
	transient response by using Laplace transform.		
5	Stability Analysis and Root Locus Method	08	CO5
	Concept of stability, definitions, bounded input-bounded output		
	stability, relative stability, necessary and sufficient conditions for		
	stability, Routh's stability criterion, relative stability analysis, root		
	locus technique, applications, concept, construction of root loci, root		
	loci of different systems, electrical RLC circuits, etc.		
6	Frequency Response and Stability Analysis	08	CO6
	Correlation between time and frequency response, polar plots, Bode		
	plots, Nyquist stability criterion, frequency response		
	specifications, stability analysis using-bode plots, polar plots,		
	definition and significance of gain margin and phase margin,		
	sensitivity analysis in frequency domain, Frequency response and		
	analysis of electrical RLC circuits.		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books.

1. Nagrath I. G., Gopal M., Control System Engineering, New Age International (P) Ltd.

Publishers, 2000

2. Kuo Benjamin C., "Automatic Control Systems",6th Edition, Prentice Hall of India, New Delhi, 1993.

Reference Books

- 1. Gopal M. "Control Systems Principles and Design", Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1998.
- 2. Nise Norman S., "Control Systems Engineering", 3rd.Edition, John Wiley and Sons, Inc.-2000.
- Lewis Paul H., Chang Yang, "Basic Control Systems Engineering", Prentice HallInternational, Inc. 1997.
- Raymond T. Stefani, Bahram Shahian, late Clement J. Savant and, late Gene H. Hostetter, "Design of Feedback Control Systems", 4th Edition., Oxford, University Press, New Delhi, 2001.
- 5. Dhanesh N. Manik, "Control System", Cengage Learning India, 1stEdition, 2012.

Subject	Subject Name	Teaching Scl	Credits Assigned					
Code	je se je se	Theory	Pract	Tut.	Theory	Pract.	Tut.	Total
ISC404	Analytical Instrumentation	3	-	-	3	-	-	3

Subject Code	Subject Name	Examination Scheme								
		Theory				E	Pract.		T	
		Internal Assessment (out of 20)				Term Work	and Oral	Oral	Total	
		Test 1	Test 2	Avg	Exam		orur		•	
ISC404	Analytical Instrumentation	20	20	20	80	-	-	-	100	

Subject Code	Subject Name							
ISC404	Analytical Instrumentation							
Course Objectives	 Introduce the basic concept of qualitative and quantitative analysis of a given sample. Study various spectroscopic techniques and its instrumentation. Study the concept of separation science and its applications. Study the concept of radiochemical analysis along with industrial analyzers. 							
Course Outcomes	The students will be able to: 1) Define and explain various fundamentals of spectroscopy, qualitative and							
	 quantitative analysis. 2) Discuss the terms, principle, instrumentation, operation and app Molecular spectroscopic techniques. 	lications of						
	3) Differentiate between principle, instrumentation and operation absorption and emission Spectroscopy.	of Atomic						
	4) Explain the various Separation techniques and its instrumentation.							
Dataila of Sullahuar	5) Describe the principle and working of various Radiation detectors.6) Discuss the principle and working of various Gas analyzers.							

Details of Syllabus:

Prerequisite: Knowledge of sensors and analog electronic circuits.

Module	Contents	Hrs	CO Mapping
			mapping

1	 Introduction: Introduction to analytical Instrumentation. Compare classical analytical techniques with instrumental techniques. Fundamentals of Spectroscopy: Nature of Electromagnetic Radiation, Electromagnetic spectrum, Beer Lambert's Law statement and derivation. Deviations from Beer's law. Numerical on EMR and laws of photometry. Interaction of radiation with matter. Instrumentation of spectroscopic analytical system – Radiation sources, Wavelength selectors, Detectors, signal processors and readout modules. 	06	CO1
2	 Molecular Spectroscopy: Molecular Energy levels, correlation of energy levels with transitions. Electronic transitions and Vibrational transitions – Introduction to UV-VIS molecular spectroscopy – basics of single beam, double beam spectrophotometer and filter photometer, its instrumentation and applications. Basic principle of Fluorescence, Phosphorescence and Raman Spectroscopy, components and instrumentation of Fluorimeters, Phosphorimeters and Raman spectrometers. Nuclear/Rotational transitions – Nuclear Magnetic Resonance (NMR) spectroscopy, basic principle and numerical problems based on NMR principle, instrumentation and constructional details of NMR Spectrometer. Electron Spin Resonance (ESR) Spectroscopy – Basic principle and construction of ESR spectrometer. 	10	CO2
3	Atomic Spectroscopy: Atomic Energy levels, Atomic absorption spectrometers- components, working and absorption spectra. Atomic Emission spectrometers – components, working and emission spectra, comparison between AAS and AES.	03	CO3
4	 Separation Science: Chromatography: Fundamentals of chromatographic Separations, Classification, Gas chromatographic system with components, factors affecting separation, applications. Analysis of Gas Chromatogram. HPLC – Its principle and instrumentation. Mass Spectrometers: Basic principle, components and types of mass spectrometers, sample handling techniques for liquids and solids, resolution and numerical problems based on resolution. Interfacing Gas Chromatography and Mass spectrometry (GCMS). 	09	CO4
5	Radio Chemical Instrumentation: Basics of Radioactivity, properties of radiations (α , β , γ). Half- life period and numerical problems based on half-life period. Radiation detectors – Ionization chamber, Proportional counter, Geiger Muller counter, Scintillation detector, Semiconductor detectors, Pulse height analyzers.	05	CO5

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- Question No. 1 will be compulsory and based on entire syllabus wherein sub questions will be of 4 to 5 marks.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

Text Books:

1. Willard, Merritt, Dean, Settle, *Instrumental Methods of Analysis*, CBS Publishers & Distributors, New Delhi, 7th Edition.

2. Khandpur R. S., Handbook of Analytical Instruments, Tata McGraw-Hill Publications, 3rd Edition.

Reference Books:

- 1. Skoog, Holler, Niemen, *Thomson Principles of Instrumental Analysis*, Books-Cole Publications, 5th Edition.
- 2. Ewing Galen W., Instrumental Methods of Chemical Analysis, McGraw-Hill Book Company, 5th Edition.
- 3. Braun Robert D., Introduction to Instrumental Analysis, McGraw-Hill Book Company.
- 4. Sherman R.E., Analytical Instrumentation, ISA Publication.
- 5. B.R.Bairi, Balvindersingh, N.C.Rathod, P.V.Narurkar *Handbook nuclear medical Instruments*, McGraw-Hill Book Company.

Subject code	Subject Name	Teaching	eaching scheme			Credit assigned			
ISC405	Signal	Theory	Theory Pract. Tut.			Pract.	Tut.	Total	
	Conditioning	4	-	-	4	-	-	4	
	Circuit								
	Design								

Sub	Subject Name	Examin	Examination scheme							
Code		Theory (out of 100)				Term	Pract.	Oral	Total	
		Internal Assessment End			work	and				
		Test1	Test2	Avg.	sem		Oral			
					Exam					
ISC405	Signal	20	20	20	80	-	-	-	100	
	Conditioning									
	Circuit									
	Design									

Subject Code	Subject Name	Credits
ISC405	Signal Conditioning Circuit Design	4
Course objectives	1. To give the knowledge about the various components and conditioning.	alog signal
	2. To impart knowledge of design considerations of ana conditioning of components.	log signal
	3. To give the students knowledge about various components di conditioning.	gital signal
	4. To make the students capable to apply knowledge to desi transducer signal conditioning circuits	gn various
	5. To give the students knowledge about the adjustable power supp	oly design
Course Outcomes	The students will be able to:	
	1. Explain principle of analog signal conditioning circuits	
	2. Design analog signal conditioners	
	3. Design digital signal conditioners	
	4. Apply knowledge of signal conditioning circuits to design temp pressure transducers signal conditioning	berature and
	5. Apply knowledge of signal conditioning circuits to design miscellaneous transducers signal conditioning	optical and
	6. Apply knowledge to design different power supplies.	

Details of Syllabus:

Prerequisite: Knowledge of various sensors and basic electronics.

Module	Contents	Hrs	CO
			mapping
1	Principles of Analog Signal Conditioning:	06	CO1
	Standard analog signals, Signal Level and bias changes,		
	Linearization, signal conversion, filtering and impedance		
	matching, concept of loading.		
	Passive circuits - Divider Circuits, Bridge circuits (Current,		
	Voltage, Balanced and Unbalanced), RC filters		
2	Analog signal conditioners and their design	12	CO2

University of Mumbai, Instrumentation Engineering, Rev 2016-17

	Practical applications of Op amp based circuits with design: Differentiators, Integrator, Instrumentation amplifier using 3 op amps Half wave, full wave milivolt rectification, absolute value circuit, Log and antilog amplifier with temperature compensation, active		
	filters, threshold detector, zero crossing detector, window detector, Phase locked loops (PLL), Voltage to Current converter		
	and Current to Voltage Converter, 555 Timer: modes of operation		
	with applications.		
	Guidelines for analog signal conditioning design and design		
2	based problems	10	<u> </u>
3	Components of Digital Signal Conditioning : Block diagram of Digital signal conditioning, Characteristics of digital data: digitized value, sampled data system and linearization, sample and hold circuit, peak detector, ADC (Successive Approximation, Flash, Ramp, dual slope) and DAC (R/2R, Weighted resistors) their types and specifications, V to F and F to V converters.	10	CO3
4	Thermal and Pressure Transducers Signal Conditioning	8	CO4
	Design : Thermal sensor signal conditioning, design considerations and application for RTD, Thermistor, thermocouple and solid state temperature sensor. Pressure Transducer signal conditioning Design: design		
	considerations and applications for various pressure sensors.		
5	Optical and Other Transducer Signal Conditioning Design : Optical Sensor signal conditioning - photo-diode with photo- conducting and photovoltaic modes, photo-transistor and photomultiplier tube. Optical encoder signal conditioning for linear displacement, velocity and angular displacement applications. Other sensor signal conditioning: Potentiometer, LVDT, strain	6	CO5
6	gauges, piezoelectric and capacitive transducers	6	CO6
U	Power Supply Design : Power supply design using 78xx series, 79xx series and adjustable voltage IC regulators like 723 and LM317. Switched Mode Power Supply (SMPS): Block diagram with advantages and disadvantages over conventional power supply.	U	

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 Marks.

- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

University of Mumbai, Instrumentation Engineering, Rev 2016-17

Text Books:

- 1. Ramakant Gayakwad "Op-amp and Linear Integrated Circuits", PHI Pearson Education.
- 2. C. D. Johnson, "Process Control Instrumentation Technology (VIII Edition)"

Reference Books:

- 1. Roy Choudhary, "Linear Integrated Circuits", Wiley Eastern, 1991.
- 2. Coughlin & Driscoll, "Op-amp and Linear ICs" 6 th Edition, PHI 2002.
- 3. C. D. Johnson, "Microprocessor Based Process Control", PHI
- 4. Sergio Franco, "Design with op-amp analog ICs" McGraw Hill, 1988.
- 5. Robert G. Seippel, "Transducer Interfacing Signal Conditioning for Process Control", Prentice Hill.
- 6. D. E. Pippenger and E. J. Tobanen, "Linear and Interface Circuits Applications", McGraw Hill, 1988.
- 7. Burr-Brown, "General Catalog", Tucson, Ariz:Burr-Brown, 1979.

Subject code	Subject Name	Teaching scheme			Credit assigned				
ISL401	Application	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Software	-	4*	-	-	2	-	2	
	Practice								

* Out of 4 hours 2 hours theory shall be taught to entire class followed by 2hours practical in batches

Sub	Subject	Examin	Examination scheme							
Code	Name						Pract.	Oral	Total	
		Internal	Internal Assessment End				and			
		Test1	Test2	Avg.	Sem		Oral			
					Exam					
ISL401	Application	-	-	-	-	50	25	-	75	
	Software									
	Practice									

Subject Code	Subject Name	Credits						
ISL401	Application Software Practice	2						
Course objectives	To study graphical programming language for creating simulation and custom applications that interact with real-world data or signals in fields of science and engineering.							
Course Outcomes	 Students will be able to 1. Design logical operations, using Graphical programm language 2. Develop customized virtual instruments and represen required format with user friendly graphical programm software for LOOPS like FOR LOOP, WHILE LOOI 3. Discuss Global variable, sequence structure etc. 4. Explain Visa programming 5. Discuss concepts of hardware used 6. Use the data acquisition card or simulated software m make user interface in the field of engineering. 	t them in ming P etc.						

Details of Syllabus:

Prerequisite: Knowledge of Mathematics and conversion, LOOPs, switch CASE of any other software like C program, simple concept of proportional process.

Module	Contents	Hrs	CO mapping
1	Graphical Programming Software basics: Components of virtual instrument, creating virtual files and sub-files, data types, debugging techniques.	03	CO1
2	Structures- FOR, WHILE, Case structure, Timing, formula nodes and math script, loops- shift registers Auto-indexing concept, feedback nodes. Arrays and clusters, Strings, File I/O.	07	CO2
3	Sequence structure -Local and global variables, Express virtual files	02	CO3

4	VISA programming, Understanding simple concepts of control using PID block, Plotting data graphs and charts,	06	CO4
5	Introduction to terms: Measurement system, sampling, calibration, measurement hardware- configuration.	02	CO5
6	Data Acquisition cards, Graphical Programming Software modules and tool sets, general applications of Graphical Programming Software.	04	CO6

List of Laboratory Experiments:

Sr. No.	Detailed Contents	CO mapping
1	To develop a VI to calculate speed, convert degree celcius to Fahrenheit	C01
2	To develop a Sub VI to Perform Half adder and implement Full ADDER using Sub-VI	C01
3	To develop VI using FOR and WHILE loop to add 10 numbers, calculate Factorial of a given number	CO2
4	To create VI to find roots of quadratic equation, user defined unit conversions etc using case structure.	CO2
5	To create VI student database using String control and Array and cluster functions.	CO2
6	To develop a VI for storing all the points of simulated signal using File I/Os	CO1
7	To create VI to simulate traffic light control, stirred tank heater etc. using Sequence structure	CO3
8	To create VI to simulate bottle filling plant using Sequence structure.	CO3
9	Build a VI to plot circle in XY graph, generate and plot random numbers on chart, different colors in an intensity graph etc with graph, chart properties and options.	CO4
10	Applications of Graphical Programming Software in digital electronics—binary to decimal conversion etc.	CO1,CO2
11	Applications of Graphical Programming Software in control — simulate first and second order system response, effect of damping factor etc.	CO4
12	Applications of Graphical Programming Software in process —tank level/temperature control, alarm annunciator, batch process control etc.	CO5
13	Measurement of AC/ DC voltage and current using DAQ cards.	CO6

14	Any one Mini project based on the above syllabus	CO1 -CO6

Note:

Any other experiments based on syllabus which will help students to understand topic/concept can also be included.

For this course use Graphical Programming Software like Lab View or Open Source Software

Term Work:

Term work shall consist of minimum 10 programs from the list of suggested programs and one Mini-project of your choice or from the list given above.

The distribution of marks for term work shall be as follows:

Laboratory work (Performing Experiments)	: 20 Marks
Laboratory work (programs/ journal)	: 10 Marks
Mini Project	: 15 Marks
Marks Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Practical /oral Examination:

Practical/Oral examination will be based on entire syllabus.

Reference Books:

- 1. Robert Bishop, "Learning with LabVIEW TM 7 express", Pearson Education, 2005.
- 2. Jovitha Jerome, "Virtual Instrumentation", PHI, 2010.
- **3.** Gupta S, "Virtual Instrumentation Using LabVIEW", Tata McGraw Hill Publishing Company Limited.
- **4.** LabVIEW users manual.
- 5. National instruments Product catalog.

Website: www.ni.com

Subject code	Subject Name	Teaching scheme			Credi	Credit assigned							
ISL402	Transducer - II Lab	Theory	Pract	Tut.	Theor	Theory		Pract.		t.	Total		
	Practice	-	2	-	-	-				-	1		
Sub	Subject	Examina	Examination scheme										
Code	Name					Te	rm	Pra	ct.	Oral	Total		
		Internal A	Assessm	lent	End	wo	work ar		l				
		Test1	Test2	Avg.	Sem		Ora		Ora	Oral	Oral		
				_	exam								
ISL402	Transducer -	-	-	-	-	25		25 25		-	50		
	II Lab												
	Practice												

Subject Code	Subject Name credits	5			
ISL402	Transducer II Lab Practice 1				
Course Objectives	1. To make students understand the construction, working				
	principle and application of various transducers used for flow	7			
	measurement, strain measurement, pressure.				
	 To study electro-chemical sensors and transducers used for density and viscosity measurement 				
	. To experimentally verify the principle and characteristics of various transducers				
Course Outcomes	Students will be able to -				
	1. Explain working principle of transducers used for strain				
	measurement.				
	2. Explain working principle of transducers used pressure measurement.				
	3. Identify constant head type flow sensors such as orifice, venturi, tube, nozzle and pitot tube and study the applications	5.			
	4. Identify variable area and electromagnetic flow meters				
	5. Demonstrate the performance characteristics of various				
	electrochemical sensors				
	6. Use miscellaneous sensors for density and viscosity				
	measurement.				

Syllabus same as that of subject ISC402 Transducers-II

List of Laboratory Experiments:

Sr. No.	Detailed Contents	CO mapping
1.	Strain gauge characteristics and weight measurement	CO1
2.	Study use of semiconductor strain gauges for pressure measurement	CO2
3.	Study measurement of pressure using bellows, diaphragm, bourdon tube, manometer.	CO2
4.	Test and calibration of pressure gauges using dead weight tester.	CO2

5.	Measurement of flow using orifice/venturi tube/nozzle/pitot tube.	CO3
6.	Measurement of flow using rotameter.	CO4
7.	Measurement of flow using electromagnetic flow meter.	CO4
8.	Study and characterization of pH meter.	CO5
9.	Study and characterization of conductivity meter.	CO5
10.	Measurement of Density	CO6
11.	Viscosity measurement	CO6

Any other experiments based on syllabus which will help students to understand topic/concept.

Term Work:

Term work shall consist of minimum eight experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs/ journal)	: 10
Marks Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Practical /oral Examination:

Practical/Oral examination will be based on entire syllabus.

Subject code	Subject Name	Teaching	scheme		Credit assigned				
ISL403	Feedback	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Control Systems	-	2	-	-	1	-	1	
	Lab Practice								

Sub	Subject Name	Exami	Examination scheme						
Code		Internal Assessment			End Sem Exam	Term work	Pract. and Oral	Oral	Total
		Test1	Test2	Avg.					
ISL403	Feedback Control Systems Lab Practice	-	-	-	-	25	-	25	50

Subject Code	Subject Name	credits					
ISL403	Feedback Control Systems Lab Practice	1					
Course objectives	1. The students should be able to examine steady-state and frequen	cy					
	response of the Type 0, 1, and 2 systems.						
	2. The students should be able to examine steady-state and frequen	cy					
	response of first and second order electrical systems. The students should able to examine time response analysis of first and						
	1 2						
	second order systems.						
	4. Students can be able to inspect stability analysis of system using Root						
	locus, Bode plot, polar plot.						
Course Outcomes	Students will be able to -						
	1. Plot frequency response of first-order electrical system.						
	2. Plot time response of second-order electrical system and cal steady-state error.	culate the					
	3. Demonstrate their knowledge to obtain the transfer function an and steady-state response to test signals such as step, ramp, and						
	4. Understand the effect of damping factor on system response.						
	5. Inspect the time response specifications of systems by using roo						
	6. Inspect the frequency response specifications of systems by us	e					
	plot, Polar plot, Nyquist-plot techniques, and comment on the stability of						
	system						

Syllabus same as that of subject ISC403 Feedback Control systems

List of Laboratory Experiments:

Sr. No.	Detailed Contents	CO mapping
1	To plot the effect of time constant on first – order systems response.	CO1
2	To plot the frequency response of first-order system	CO1
3	To plot the time response of second – order systems.	CO2
4	To examine steady state errors for Type 0, 1, 2 systems	CO3
5	To study the block diagram reduction technique by using simulation software.	CO3

University of Mumbai, Instrumentation Engineering, Rev 2016-17

6	To interpret the effect of damping factor on the performance of second order system.	CO4
7	To inspect the relative stability of systems by Root-Locus using Simulation Software	CO5
8	To inspect the stability of systems by Bode plot using Simulation Software	CO6
9	To determine the frequency response specifications from Polar plot of system	CO6
10	To inspect the stability of systems by Nyquist plot using Simulation Software	CO6

Any other experiments based on syllabus which will help students to understand topic/concept.

Note: Sr. 1 to 4 experiments should be performed using practical kit /bread-board and Sr. 5 to 10 by using simulation software like MATH CAD/MATLAB/SCILAB/OCTAVE or equivalent. **Term Work:**

Term work shall consist of <u>Eight</u> experiments. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks						
Laboratory work (programs /journal)	: 10 Marks						
Attendance	: 5 Marks						
The final certification and acceptance of	term work ensures the satisfactory performance of laboratory						
work and minimum passing in the term work.							

Oral Examination:

Oral examination will be based on entire syllabus.

Subject	Subject Name	Subject Name Teaching Scheme (Hrs.)			Credits Assigned			
Code	5	Theory	Pract	Tut.	Theory	Pract.	Tut.	Total
ISL404	Analytical Instrumentation Lab Practice	-	2	-	-	1	-	1

		Examination Scheme								
Subject		Theory				Tarma	Pract.		T-4-1	
Code					End sem	Term Work	and Oral	Oral	Total	
		Test 1	Test 2	Avg	Exam		orur			
ISL404	Analytical Instrumentation Lab Practice	-	-	-	-	25	-	25	50	

Subject Code	Subject Name	Credits
ISL404	Analytical Instrumentation Lab Practice	1
Course Objectives	 To make students perform experiments to understand co working of various Analytical Instruments. To develop skills in analyzing the sample using various spe techniques. 	1
Course Outcomes	 The students will be able to: Illustrate the concept and working of various spectrome different samples. Analyze the given sample in qualitative and quantitative man spectral techniques. Use specific techniques employed for monitoring different pollu and water. Demonstrate the working of various radiation detectors. Experiment the working of instruments used for clinical an pharmaceutical laboratories. Illustrate the concept of separation science. 	ner, using tants in air

Syllabus: Same as that of Subject ISC404 Analytical Instrumentation.

List of Laboratory Experiments / Assignments:

Sr.	Detailed Content	CO
No.		Mapping

1.	To calculate the refractive index of a given sample using Refractometer.	CO1
2.	To examine the optical density of a given sample using Photoelectric Colorimeter.	CO2
3.	To identify the optical density of a given sample using Balance cell Colorimeter.	CO2
4.	To determine the absorbance and transmittances of a given sample using Single/double beam UV/VIS spectrometer.	CO2
5.	To examine the optical density of given electrophoresis strip using Densitometer.	CO1
6.	To identify the turbidity of given sample using Nephalo-turbidity meter.	CO3
7.	To determine the pH of a given solution using pH meter.	CO5
8.	To determine the conductivity of a given sample using conductivity meter.	CO5
9.	To determine the Na and K concentration in a given sample using Flame Photometer	CO1
10.	To examine the fluorescence phenomenon using Photo-fluorimeter.	CO1
11.	To demonstrate the radioactive radiations using Geiger Muller counter and Scintillation counter.	CO4
12.	To demonstrate the working of Gas chromatograph.	CO6

Any other experiment based on syllabus which will help students to understand topic/concept.

Note:

- 1. Minimum of eight experiments and two assignments can be performed during the semester for term work and oral examination.
- 2. Industry visit is advised to understand the concept of Analytical Instrumentation subject.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term work:

Term work shall consist of minimum 08 experiments from the above given list and 02 assignments on the entire syllabus.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Two Assignments and viva on practicals	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching	5			Credit assigned		
ISL405	Signal	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Conditioning	-	2	-	-	1	-	1
	Circuit Design							
	Lab Practice							

Sub	Subject Name	Exam	ination so	cheme					
Code		Internal Assessment			Term	Pract.	Oral	Total	
		E			End	work	and		
		Test	Test2	Avg.	semEx		Oral		
		1			am				
ISL405	Signal	-	-	-	-	25	25	-	50
	Conditioning								
	Circuit								
	Design Lab								
	Practice								

Subject Code	Subject Name	credits					
ISL405	Signal Conditioning Circuit Design Lab Practice	1					
Course objectives	1. To give the knowledge about the various components an	alog signal					
	conditioning.						
	2. To impart knowledge of design considerations of ana	alog signal					
	conditioning of components.						
	3. To give the students knowledge about various compone	ents digital					
	signal conditioning.4. To make the students capable to apply knowledge to des	ion various					
	transducer signal conditioning circuits	ign various					
	5. To give the students knowledge about the adjustable po	wer supply					
	design						
Course Outcomes	The students will be able to						
	1. Explain working principle of signal conditioning circuit	ts					
	2. Discuss the design considerations of analog signal co	onditioners					
	used in transducer signal conditioning.						
	3. Discuss the design considerations of various digit	ital signal					
	conditioners used in transducer signal conditioning.						
	4. Apply knowledge of signal conditioning circuits to design t	emperature					
	and pressure transducers signal conditioning						
	5. Apply knowledge of signal conditioning circuits to design	optical and					
	miscellaneous transducers signal conditioning						
	6. Apply knowledge to design different power supply.						

Syllabus: same as that of subject ISC405 Signal Conditioning Circuit Design

List of Laboratory Experiments:

Sr.	Detailed Content	СО
No.		Mapping

r		
1	Demonstrate non-inverting buffer amplifier circuit	CO1
2	Design and demonstrate general signal conditioning circuit to convert sensor output to 0-5 V	CO2
3	Design and demonstrate general signal conditioning circuit to convert sensor output to 4-20 mA	CO2
4	Design and demonstrate signal conditioning circuit for low level signals in micro-volts' region	CO2, CO4
5	Design and demonstrate absolute value circuit for an application	CO2
6	Design and demonstrate signal conditioning circuit for weight measuring system using strain gauge	CO5
7	Design and demonstrate signal conditioning circuit for capacitive transducer	CO5
8	Design and demonstrate second order LPF and HPF for any application	CO2
9	Design signal conditioning circuit for RTD	CO4, CO2
10	Design signal conditioning circuit for optical sensor.	CO2, CO5
11	Design and demonstrate digital to Analog converter circuit	CO3
12	Design and demonstrate I to V and V to I converter circuit	CO2
13	Design and implement Astable and Monostable Multivibrator using IC 555.	CO3
14	Design adjustable voltage regulators using IC723/ LM317	CO6

Any other experiments based on syllabus which will help students to understand topic/ concept.

Term Work:

Term work shall consist of minimum eight experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs / journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Program Structure for TE Instrumentation Engineering University of Mumbai (With Effect from 2018-19)

Scheme for Semester V

Course	Course Name		aching Sch Contact Ho			Credits	s Assigned	
Code	Course Maine	Theo ry	Practic al	Tutori al	Theory	Practi cal	Tutoria l	Total
ISC501	Signals and Systems	4	-	-	4	-	-	4
ISC502	Applications of Microcontroller	4	-	-	4	-	-	4
ISC503	Control System Design	4	-	-	4	-	-	4
ISC504	Control System Components	4	-	-	4	-	-	4
ISDLO50 1X	Department Level Optional Course I	3	-	-	3	-	-	3
ISL501	Business Communication and Ethics	-	4#	-	-	2	-	2
ISL502	Applications of Microcontroller – Lab Practice	-	2	-	-	1	-	1
ISL503	Control System Design Lab Practice	-	2	-	-	1	-	1
ISL504	Control System Components – Lab Practice	-	2	-	-	1	-	1
ISL505	Department Level Optional Course I – Lab Practice	-	2	-	-	1	-	1
ISL506	Mini-project – I	-	2	-	-	1	-	1
	Total	19	14	-	19	07	-	26

Out of four hours, 2 hours theory shall be taught to entire class and 2 hours practical in batches

		Examination S	Scheme				_
Course Code	Course Name	Theory End Sem Exam (ESE)	Internal Assessment (IA)	Term Work	Oral	Pract. & Oral	Total
		Max Marks	Max Marks	Max Marks	Max Marks	Max Marks	– Marks
ISC501	Signals and Systems	80	20	-	-	-	100
ISC502	Applications of Microcontroller	80	20	-	-	-	100
ISC503	Control System Design	80	20	-	-	-	100
ISC504	Control System Components	80	20	-	-	-	100
ISDLO50 1X	Department Level Optional Course I	80	20	-	-	-	100
ISL501	Business Communication and Ethics	-	-	50	-	-	50
ISL502	Applications of Microcontroller – Lab Practice	-	-	25	-	25	50
ISL503	Control System Design Lab Practice	-	-	25	25	-	50
ISL504	Control System Components – Lab Practice	-	-	25	-	25	50
ISL505	Department Level Optional Course I – Lab Practice	-	-	25	25	-	50
ISL506	Mini-project – I	-	-	25	25	-	50
Total		400	100	175	75	50	800

Program Structure for TE Instrumentation Engineering University of Mumbai (With Effect from 2018-19)

Scheme for Semester VI

Course	Course Name		aching Scl Contact Ho			Credits	Assigned	
Code	Course realite	Theo ry	Practic al	Tutoria l	Theory	Practic al	Tutori al	Total
ISC601	Process Instrumentation System	4	-	-	4	-	-	4
ISC602	Industrial Data Communication	3	-	-	3	-	-	3
ISC603	Electrical machines and Drives	4	-	-	4	-	-	4
ISC604	Digital Signal Processing	4	-	-	4	-	-	4
ISC605	Advanced Control System	3	-	-	3	-	-	3
ISDL0602 X	Department Level Optional Course II	3	-	-	3	-	-	3
ISL601	Process Instrumentation System – Lab Practice	-	2	-	-	1	-	1
ISL602	Industrial Data Communication – Lab Practice	-	2	-	-	1	-	1
ISL603	Electrical machines and Drives – Lab Practice	-	2	-	-	1	-	1
ISL604	Digital Signal Processing – Lab Practice	-	2	-	-	1	-	1
ISL605	Advanced Control System – Lab Practice	-	2	-	-	1	-	1
ISL 606	Mini-project - II	-	2	-	-	1	-	1
Total		21	12	-	21	06	-	27

Examination Scheme for Semester VI

		Examination Scheme						
		Theory					-	
	Course Name	End Sem Exam	Internal Assessment	Term Work	Oral	Pract. & Oral		
Course Code	Course maine	(ESE)	(IA)				Total	
		Max	Max	Max	Max	Max	Marks	
	Marks	Marks	Marks	Marks	Marks			
ISC601	Process Instrumentation System	80	20	-	-		100	
ISC602	Industrial Data Communication	80	20	-	-		100	
ISC603	Electrical machines and Drives	80	20	-	-		100	
ISC604	Digital Signal Processing	80	20	-	-		100	
ISC605	Advanced Control System	80	20	-	-		100	
ISDL060 2X	Department Level Optional Course II	80	20	-	-		100	
ISL601	Process Instrumentation System – Lab Practice	-	-	25	25		50	
ISL602	Industrial Data Communication – Lab Practice	-	-	25	-	-	25	
ISL603	Electrical machines and Drives – Lab Practice	-	-	25	25	-	50	
ISL604	Digital Signal Processing – Lab Practice	-	-	25	-	25	50	
ISL605	Advanced Control System – Lab Practice	-	-	25	-	25	50	
ISL 606	Mini-project - II	-	-	25#	-	-	25	
Total		480	120	150	50	50	850	

Mini-project based on internal oral and project report.

Program Structure for BE Instrumentation Engineering University of Mumbai (With Effect from 2019-20)

Scheme for Semester VII

Course	Course Name		aching Scl Contact Ho		Credits Assigned			
Code		Theo ry	Practic al	Tutoria l	Theory	Practic al	Tutori al	Total
ISC701	Industrial Process Control	4	-	-	4	-	-	4
ISC702	Biomedical Instrumentation	4	-	-	4	-	-	4
ISC703	Industrial Automation	4	-	-	4	-	-	4
ISDLO70 3X	Department Level Optional Course III	4	-	-	4	-	-	4
ILO701X	Institute Level Optional Course I	3	-	-	3	-	-	3
ISL701	Industrial Process Control – Lab Practice	-	2	-	-	1	-	1
ISL702	Biomedical Instrumentation – Lab Practice	-	2	-	-	1	-	1
ISL703	Industrial Automation – Lab Practice	-	2	-	-	1	-	1
ISL704	Department Level Optional Course III – Lab Practice	-	2	-	-	1	-	1
ISL705	Project I	-	6	-	-	3	-	3
Total		19	14	-	19	07	-	26

			Examination Scheme						
Course Course Name	TheoryEnd Sem ExamInternal Assessmed (ESE)(IA)		Term Work	Oral	Pract. & Oral	Total			
		Max Marks	Max Marks	Max Marks	Max Marks	Max Marks	– Marks		
ISC701	Industrial Process Control	80	20	-	-	-	100		
ISC702	Biomedical Instrumentation	80	20	-	-	-	100		
ISC703	Industrial Automation	80	20	-	-	-	100		
ISDLO7 03X	Department Level Optional Course III	80	20	-	-	-	100		
ILO701 X	Institute Level Optional Course I	80	20	-	-	-	100		
ISL701	Industrial Process Control – Lab Practice	-	-	25	25	-	50		
ISL702	Biomedical Instrumentation – Lab Practice	-	-	25	25	-	50		
ISL703	Industrial Automation – Lab Practice	-	-	25	25	-	50		
ISL704	Department Level Optional Course III – Lab Practice	-	-	25	25	-	50		
ISL705	Project I	-	-	50	50	-	100		
Total		400	100	150	150	-	800		

Program Structure for BE Instrumentation Engineering University of Mumbai (With Effect from 2019-20)

Scheme for Semester VIII

Course	Course Name		aching Scl Contact Ho		Credits Assigned			
Code	Course realite	Theo ry	Practic al	Tutoria l	Theory	Practic al	Tutori al	Total
ISC801	Instrumentation Project Documentation and Execution	4	-	-	4	-	-	4
ISC802	Instrument and System design	4	-	-	4	-	-	4
ISDLO80 4X	Department Level Optional Course IV	4	-	-	4	-	-	4
ILO802X	Institute Level Optional Course II	3	-	-	3	-	-	3
ISL801	Instrumentation Project Documentation and Execution	-	2	-	-	1	-	1
ISL802	Instrument and System design	-	2	-	-	1	-	1
ISL803	Department Level Optional Course IV – Lab Practice	-	2	-	-	1	-	1
ISL804	Project II	-	12	-	-	6	-	6
Total		15	18	-	15	09	-	24

Examination Scheme for Semester VIII

			Exar	nination Scheme			
Course	Course Name	Theory	Internal		Oral	Pract. &	Total Marks
Code		End Sem Exam(ESE)	Assessment (IA)	Term Work	Ului	Oral	
		Max	Max	Max	Max	Max	
		Marks	Marks	Marks	Marks	Marks	
ISC801	Instrumentation Project Documentation and Execution	80	20	-	-	-	100
ISC802	Instrument and System design	80	20	-	-	-	100
ISDLO80 4X	Department Level Optional Course IV	80	20	-	-	-	100
ILO802X	Institute Level Optional Course II	80	20	-	-	-	100
ISL801	Instrumentation Project Documentation and Execution	-	-	25	25	-	50
ISL802	Instrument and System design	-	-	25	25	-	50
ISL803	Department Level Optional Course IV– Lab Practice	-	-	25	25	-	50
ISL804	Project II	-	-	100	50	-	150
Total		320	80	175	125	-	700

Department Level Optional Courses:

Subject Code	Subject Name
ISDLO5011	Advanced Sensors
ISDLO5012	Optimization Techniques
ISDLO5013	Database Management System
ISDLO5014	Fiber Optic Instrumentation

Subject Code	Subject Name
ISDLO6021	Material Science
ISDLO6022	Computer Organization and Architecture
ISDLO6023	Bio-sensors and Signal Processing
ISDLO6024	Nuclear Instrumentation

Subject Code	Subject Name
ISDLO7031	Image Processing
ISDLO7032	Digital Control System
ISDLO7033	Advanced Microcontroller Systems
ISDLO7034	Mechatronics
ISDLO7035	Building Automation

Subject Code	Subject Name
ISDLO8041	Expert System
ISDLO8042	Optimal Control System
ISDLO8043	Internet of Things(IOT)
ISDLO8044	Power Plant Instrumentation
ISDLO8045	Functional Safety

Institute Level Optional Courses

Subject Code	Institute level Optional Course - I
ILO7011	Product Lifecycle Management
ILO7012	Reliability Engineering
ILO7013	Management Information System
ILO7014	Design of Experiments
ILO7015	Operation Research
ILO7016	Cyber Security and Laws
ILO7017	Disaster Management and Mitigation Measures
ILO7018	Energy Audit and Management
ILO7019	Development Engineering

Subject Code	Institute level Optional Course - II
ILO8021	Project Management
ILO8022	Finance Management
ILO8023	Entrepreneurship Development and Management
ILO8024	Human Resource Management
ILO8025	Professional Ethics and Corporate Social Responsibility
	(CSR)
ILO8026	Research Methodology
ILO8027	IPR and Patenting
ILO8028	Digital Business Management
ILO8029	Environmental Management