

AC_____ Item No. _____

UNIVERSITY OF MUMBAI

Sr. No.	Heading	Particulars
1	Title of the Course	Final Year of B.E in Instrumentation Engineering
2	Eligibility for Admission	After Passing Third Year Engineering as per the Ordinance 0.6242
3	Passing Marks	40%
4	Ordinances / Regulations (if any)	Ordinance 0.6242
5	No. of Years / Semesters	4 Years / 8 Semesters
6	Level	P.G./ U.G./ Diploma / Certificate (Strike out which is not applicable)
7	Pattern	Yearly / Semester (Strike out which is not applicable)
8	Status	New / Revised REV- 2019 'C' Scheme
9	To be implemented from Academic Year	With effect from Academic Year: 2022-2023

Date:

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology Technology University of Mumbai Dr. Anuradha Majumdar Dean Faculty of Science and University of Mumbai

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering) of University of Mumbai has taken a lead in incorporating philosophy of outcome-based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. Italsofocusesoncontinuousevaluationwhichwillenhancethequalityofeducation. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self-learning. Therefore, in the present curriculum skill-based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self-learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Second Year of Engineering from the academic year 2020-21. Subsequently this will be carried forward for Third Year and Final Year Engineering in the academic years 2021-22, 2022-23, respectively.

Incorporation and implementation of Online Contents from <u>NPTEL/ Swayam Platform</u>

The curriculum revision is mainly focused on knowledge component, skill-based activities and project-based activities. Self-learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of 'C' scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are reduced to 171, to provide opportunity of self-learning to learner. Learners are now getting sufficient time for self-learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology Member, Academic Council, RRC in Engineering University of Mumbai

From Chairman's Desk

The overall technical education in our country is changing rapidly in manifolds. Now it is very much challenging to maintain the quality of education with its rate of expansion. To meet present requirement a systematic approach is necessary to build the strong technical base with the quality. Accreditation will provide the quality assurance in higher education and to achieve recognition of the institution or program meeting certain specified standards. The main-focus of an accreditation process is to measure the program outcomes, essentially a range of skills and knowledge that a student will have at the time of graduation from the program that is being accredited. Faculty of Science &Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome-based education in the process of curriculum development.

I, as a Chairman, Board of Studies in Instrumentation Engineering of University of Mumbai, happy to state here that, Program Educational Objectives (PEOs) were finalized for undergraduate program in Instrumentation Engineering, more than ten senior faculty members from the different institutes affiliated to University of Mumbai were actively participated in this process. Few PEOs and POs of undergraduate program in Instrumentation Engineering are listed below;

Program Educational Objectives (PEOs)

- Graduates will have successful career in industry or pursue higher studies to meet future challenges of technological development.
- Graduates will develop analytical and logical skills that enable them to analyze and design Instrumentation and Control Systems.
- Graduates will achieve professional skills to expose themselves by giving an opportunity as an individual as well as team.
- *Graduates will undertake research activities in emerging multidisciplinary fields.*

Program Outcomes (POs)

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

University of Mumbai, Instrumentation Engineering, REV 2019 'C' Scheme

- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Dr. Alice N. Cheeran Chairman, Board of Studies in Instrumentation Engineering, Member - Academic Council, University of Mumbai

Dr. Mukesh D.Patil-Member BoS Dr.Sharad P.Jadhav-Member BoS Dr. Dipak D Gawali-Member BoS Dr.M. J Lengare-Member BoS Dr.Harish K. Pillai-Member BoS

Program Structure for Final Year B.E Instrumentation Engineering

(With Effect from 2022-2023)

Scheme for Semester -VIII

Course		Teaching Scheme (Contact Hours)				Credits Assigned				
Code	Course Name	The	eory	Pra Tu	ct. t.	Theory	Pract.		Total	
ISC801	Instrument and System Design	3				3			3	
ISDOC801X	Department Optional Course-4	3				3			3	
ISDOC802X	Department Optional Course-5	3				3			3	
IOC802X	Institute Optional Course-2	3				3			3	
ISL801	Instrument and System Design– Lab			2		-		1	1	
ISL802X	Department Optional Course -4 -Lab			2				1	1	
ISP801	Major Project-II		-	12	2#			6	6	
	Total	12	2	16		12	8		20	
		Examin			xamina	ation Scheme				
			Theory				Term Work	Oral	Total	
Course	Course Name	Interi	nal Assess	sment Sem Exan		Exam. Duration (in Hrs)				
Coue		Test1	Test2	Avg						
ISC801	Instrument and System Design	20	20	20	80	3			100	
ISDOC801X	Department Optional Course-4	20	20	20	80	3			100	
ISDOC802X	Department Optional Course-5	20	20	20	80	3			100	
IOC802X	Institute Optional Course-2	20	20	20	80	3			100	
ISL801	Instrument and System Design –Lab						25	25	50	
ISL802X	Department Optional Course -4 -Lab						25	25	50	
ISP801	Major Project-II						100	50	150	
	Total			80	320		150	100	650	

Indicates the workload of Learner (Not Faculty), for Major Project

Students group and a load of faculty per week.

Major Project - I and II:

Students can form groups with a minimum 2 (Two) and not more than 4(Four) <u>Faculty Load:</u> In Semester VII–½ hour per week per project group In Semester VIII – 1-hour per week per project group

Department Optional Course – 4 (Semester- VIII)

ISDOC 8011	Digital Control System	
ISDOC 8012	Expert System	Lab work
ISDOC 8013	Digital Image Processing	
ISDOC 8014	Internet of Things	
ISDOC 8015	Advanced Biomedical Instrumentation	

Department Optional Course – 5 (Semester-VIII)

ISDOC 8021	Advanced Digital Signal Processing	
ISDOC 8022	Building Automation	No Lab work
ISDOC 8023	Functional Safety	
ISDOC 8024	Power Plant Instrumentation	
ISDOC 8025	Optimal Control System	

Institute Optional Course – 2 (Semester- VIII)

IOC8021	Project Management	IOC8026	Research Methodology		
IOC8022	Finance Management	IOC8027	IPR and Patenting		
IOC8023	Entrepreneurship Development and	IOC8028	Digital Business Management		
	Management				
IOC8024	Human Resource Management	IOC8029	Environmental Management		
IOC8025	Professional Ethics and Corporate Social				
	Responsibility				

Note: As per above Examination Scheme, the Minimum marks for passing are as follows -

Max. Marks	Min. marks
80	32
50	20
25	10
20	8

Subject code	Subject Name	Теа	aching sche	me	Credit assigned				
ISC801	Instrument	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Design	3	-	-	3	-	-	3	

		Examination scheme									
Sub Code	Subject Name		Theory (o	ut of 10))	Term	Pract.				
		Internal Assessment			End sem	work	and Oral	Total			
		Test1	Test2	Avg.	Exam		Oral				
TC COO1	Instrument	20	20	20	00				100		
18C801	and System Design	20	20	20	80	-	-	-	100		

Subject Code	Subject Name	Credits
ISC801	Instrument and System Design	3
Course Objectives	 To impart knowledge of selection and design considerations transducers along with their calibration techniques. To make the students capable of sizing the control valve. To impart the students' knowledge about the types, sizing of panels, and standards. To make the students capable to design electronic products, room layout, and its environment. To familiarize students with the concept of reliability engine 	f control control cering.
Course Outcomes	The students will be able to:	
	1. Select, design and calibrate transducers	
	2. Select and size the control valves and actuators.	
	3. Estimate valve noise and predict cavitation.	
	4. Apply knowledge to design the control panels and control roo	m.
	5. Design electronic products and enclosures.	
	6. Define the terms used in Reliability engineering.	

Prerequisite: Knowledge of transducers and control valves

Module	Contents	Hrs.	CO mapping
	Design of Transducers:		
1	instruments. Selection criteria, design considerations, calibration and installation for flow, temperature, pressure and level transducers.	07	CO1
	Design of Control Valve:		
2	Review of flow equations. Valve selection and sizing for liquid service, gas or vapor service, flashing liquids and mixed phase flow, Actuator sizing. Selection criteria and design consideration of pressure safety relief valves and rupture discs.	12	CO2
	Cavitation and Noise estimation:		
3	Control valve noise, sources of noise, noise prediction, abatement of noise. Control valve cavitation, effects, preventing cavitation, Prediction of cavitation.	07	CO3
	Control Panel and Control room design		
4	Panel selection-size, type, construction and IP classification, NEMA standard. GA Diagrams, Power wiring and distribution, Earthing scheme. Panel ventilation, cooling and illumination. Operating consoles- ergonomics. Wiring accessories- ferules, lugs, PVC ducts, spiral etc. Wire sizes and color coding. Packing, Pressurized panels- X, Y, and Z Purging for installation in hazardous areas. Ex-proof panels. Intrinsic safe (IS) and non-intrinsic safe (non-IS) cables design.	05	CO4
	Control Room Design: Layout and environment, modern control room layout		
	Electronic product design:		
5	System Engineering, Ergonomics, phases involved in electronic product design.	04	CO5
	Enclosure Design:		
	Packing and enclosures design guidelines, Grounding and shielding, front panel and cabinet design of an electronic product.		
	Reliability engineering:		
6	Reliability concepts, causes of failures, bath tub curve, Quality and reliability, MTTF, MTBF, and MTTR. Availability and Maintainability. Redundancy and redundant systems.	04	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

Text Books:

- 1. Kim R Fowler, Electronic Instrument Design, Oxford University-1996.
- 2. Bal Guruswamy E, "Reliability" TataMcGraw-HillPub.co. NewDelhi, 1999.

- 1. Les Driskell, "Control valve sizing", ISA.
- Bela G. Liptak, "Instrument Engineer 's Hand Book Process Control", Chilton Company, 3rdEdition, 1995
- Andrew Williams, —Applied instrumentation in the process industriesl, 2nd Edition, Vol. 1 &3, Gulf publishingcompany, 1979.
- Mourad Samiha & Zorian Yervant, "Principles of Testing Electronic Systems", New York. John Wiley & Sons,2000.
- 5. Lewis EE, "Introduction to Reliability Engineering" (2nd), NewYork.JohnWiley&Sons,1996.
- Anand M.S, "Electronic Instruments and Instrumentation Technology", New Delhi. Prentice Hall of India, 2004.
- 7. "Manual on product design": IISc C.E.D.T.
- 8. R. W. Zape, –" Valve selection hand book" third edition, Jaico publishinghouse, 2003.
- 9. Curtis Johnson, "ProcessControlInstrumentationTechnology", PHI/PearsonEducation2002.

Subject code	Subject Name	Те	aching scher	ne	Credit assigned			
ISDOC8011	Digital	Theory	Pract.	Tut.	Theory	Pract.	Tut.	
	Control System	3	-	-	3	-	-	

Sub Code	Subject Name	Examination scheme									
			Theory (o	out of 100	Term	Pract.					
		Internal Assessment			End sem	work	and	Oral			
		Test1	Test2	Avg.	Exam		Oral				
ISDOC8011	Digital Control System	20	20	20	80	-	-	-			
LI	v	1	1					L			

Subject Code	Subject Name	Credits					
ISDOC 8011	Digital Control Systems	3					
Course Objectives	1. To familiarize the students with the basic knowledge of disc	cretization.					
	2. To familiarize the students with the discrete-time representa systems for the analysis and design of the digital control.	tions of					
	3. To equip the students to determine the stability of the digita system.	l control					
Course Outcomes	Students will be able to:						
	1. Distinguish the continuous-time and discrete-time control s	ystems and					
	their working principles.						
	2. Discretize the given continuous-time system.						
	3. Represent the given discrete-time system in frequency and t	ime-domain.					
	4. Perform the transformation of the system in to canonical for compute the state trajectory via state transition matrix.	rms and					
	 Determine the stability of discrete-time control systems in f and time-domain. 	Determine the stability of discrete-time control systems in frequency and time-domain.					
	6. Design controller and observer for discrete-time control sys	tems.					

Prerequisite: Knowledge of basic control theory of continuous-time control systems.

Module	Contents	Hrs.	CO mapping
1	Introduction Block diagram of a typical digital control system, Practical examples of digital control systems, advantages and limitations of discrete-time control systems over continuous-time control system. Continuous time signals versus discrete-time signals, data conversion and quantization, sampling as impulse modulation, sampling period considerations, aliasing and folding, reconstruction of analog signals, zero order hold, first order hold.	6	CO1
2	Principles of Discretization Impulse sampling, data hold via zero-order hold and first-order hold with their transfer functions, discretization of the continuous-time control system using- impulse invariance technique, step-invariance, finite difference approximation of derivatives and bilinear transformation, Mapping between s-plane and z-plane.	6	CO2
3	Representation of digital control systems Linear difference equations, pulse transfer function, input output model, examples of first and second order continuous and discrete time systems, Construction of signal flow graph (SFG) for discrete-time control systems, computation of pulse transfer function via SFG.	6	CO3
4	State-space Analysis of Discrete-time Systems State-space space representation of discrete-time system. State-space representation of the system in canonical forms namely- controllable, observable and diagonal/Jordan canonical forms. Similarity transformations, non-uniqueness of state-space models, invariance of eigenvalues under similarity transformation. System transformation to diagonal/Jordan form. State transition matrix (STM), solution to the discrete-time state equations via STM.	7	CO4
5	Stability Analysis of Discrete-time Systems Stability analysis of the system system via frequency-domain approaches- analysis via pole locations in z-plane, Jury's stability test, bilinear transformation and Routh stability criterion. Stability analysis of the system system via time-domain Lyapunov approach- Lypunov functions, Lyapunov stability theorems, Lyapunov equation for linear-time invariant discrete-time systems.	6	CO5
6	State Feedback Controller and Observer Designs for of Discrete-time Systems Concepts of controllability, stabilizability, observability and detectability. Principle of duality. Effect of discretization of continuous time system on controllability and observability properties. Construction of a transformation to transform the system into controllable and observable forms for linear time-invariant single-input single-output systems. Design of state feedback control. Ackermann's formula to compute the state	8	CO6

feedback	gain	for	pole-placement,	deadbeat	control	design.	State	
observers,	desig	n of t	full state observer	using pole-	-placeme	nt metho	ds.	

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Katsuhiko Ogata, Discrete Time Control Systems, Pearson Education Inc., 1995.
- 2. M. Gopal, Digital Contol and State Variable Methods, Tata McGraw Hill, 2ndEdition, 2003.
- 3. Benjamin Kuo, "Digital Control Systems", Saunders College Publishing, 1992.

- 1. G. Franklin, J. Powel, M. Workman, *Digital Control of Dynamic Systems*, Pearson Education, 3rd Edition, 2003.
- 2. M. Fadali Antonio Visioli, Digital control Engineering Analysis & Design, Academic press, 2012.
- 3. Richard J. Vaccaro, "Digital Control", McGraw Hill Inc., 1995.
- 4. Ashish Tewari, "Modern Control System Design with MATLAB", John Wiley, Feb. 2002.
- 5. Joe H. Chow, Dean K. Frederick, "Discrete Time Control Problems using MATLAB", Thomson Learning, 1st Edition, 2003.

Course code	Subject Name	Tea	ching sch	eme		Cre	edit assigne	ed
ISDOC8012	Expert	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	System	3	-	-	3	-	-	3

			Examination scheme								
			r	Theory (10	0)		Pract				
	Subject	Interna	l Assessm	ent (20)	End	Term	and				
Sub Code	Name	Test 1	Test 2	Avg.	sem Exam	work	oral	Oral Oral	Total		
ISDOC8012	Expert System	20	20	20	80	-	-	-	100		

Subject Code	Subject Name	credits
ISDLO8012	Expert System	3
Course objective	1. To provide an understanding on the fundamentals of Artificia	1
	Interingence and Expert System.	. 1
	2. To provide an understanding on the fundamentals of neural ne	etwork.
	3. To provide an understanding on the fundamentals of fuzzy system	stems.
	4. To provide an understanding of Neuro fuzzy system.	
	5. To provide an understanding of applications based on Artifici	al
	Intelligence and Expert System.	
Course Outcome	The students will able to-	
	1. Interpret the concepts of Artificial Intelligence and Expert Sy	stem.
	2. Explain artificial neural network.	
	3. Compare advanced artificial neural network algorithms.	
	4. Define Fuzzy set, rules and membership function and also	
	defuzzification for a given problem.	
	5. Examine various hybrid systems.	
	6. Apply AI and expert systems algorithms for different domain	IS.

Prerequisite: Linear algebra.	Python Program	ming, knowledge of	control systems.	optimization technique.
	-)		•••••••••••••••••••••••••••••••••••••••	

Module	Contents	Hrs	CO Mapping
1	Introduction to Artificial Intelligence and Expert System Evolution, Definition, Features, Importance, Advantages, Disadvantages, limitations/issues, comparison.	04	CO1
2	Artificial Neural Network (ANN) Evolution, Biological Inspiration, Single and Multi-Input Neurons, Weights, Transfer Functions, Momentum, Neural network learning rule, Back propagation algorithm (BPA), Performance Index, Batch vs. Incremental Training, Single layer and multi-layer Perceptron classifiers.	08	CO2
3	Advance Neural Networks Recurrent Neural Networks, LSTM, Gated RNN, Convolutional Neural Networks, Auto Encoders.	08	CO3
4	Fuzzy Logic Fuzzy sets, Operation on Fuzzy sets, Fuzzy membership functions, Rule base, De-fuzzification, Mamdani and Sugeno Fuzzy Inference System.	07	CO4
5	Hybrid Systems Neuro fuzzy systems –Adaptive neuro fuzzy inference system (ANFIS) – Optimization of membership function and rule base. Familiarization of ANFIS Tool Box.	05	CO5
6	Case study Problem Selection, Conceptualization, Formalization, Knowledge Acquisition, Prototype Construction, Implementation, Evaluation. Process control, Electrical Engineering, Speech processing, medical diagnosis	07	CO6

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

Text Books:

- 1. Gupta, Itisha, and Garima Nagpal. *Artificial Intelligence and Expert Systems*. Stylus Publishing, LLC, 2020.
- 2. Hagan, Martin T., Howard B. Demuth, and Mark Beale. *Neural network design*. PWS Publishing Co., 1997.
- 3. Stamatios V. Kartalopolous, Understanding Neural Network and Fuzzy Logic., PHI Pvt Ltd.
- 4. Kishan Mehrotra, .Elements of ANN., 2nd Editon, Penram International Publishing(I) Pvt. Ltd.
- 5. Donald A. Waterman, -A Guide to Expert Systems^{||},Addison-Wesley Publishing Company

- 1. Laurene. V, Fausett, -Fundamentals of Neural Networks, Architecture, Algorithms, and Applications^{II}, Pearson Education,2008.
- 2. Timothy J, Ross,—Fuzzy Logicwith Engineering Applications, Wiley, Third Edition, 2010.
- 3. Zimmermann. H.J, "Fuzzy set theory-and its Applications"- Springer international edition, 2011.
- 4. Miller W.T, Sutton .R. Sand Webrose .P.J,-Neural Networksfor Controll, MIT Press, 1996.
- Kevin Nightand Elaine Rich, Nair B.,-Artificial Intelligence (SIE) , McGraw Hill-2008.
- 6. Dan W. Patterson, -Introduction to AI and ESI, Pearson Education, 2007.(Unit-III).
- 7. Peter Jackson, -Introduction to Expert Systems, 3rd Edition, Pearson Education, 2007.
- 8. Stuart Russel and Peter Norvig -AI- A Modern Approach ||, 2nd Edition, Pearson Education2007
- 9. Deepak Khemani Artificial Intelligencell, Tata McGraw Hill Education 2013.
- 10. Laurance Fausett, EnglewoodCliffs,N.J.,_FundamentalsofNeuralNetworks',Pearson Education,1992.
- 11. TimothyJ. Ross,_FuzzyLogicwith Engineering Applications', Tata McGrawHill, 1997.
- 12. S.N. Sivanandam and S.N.Deepa, Principles of Soft computing, Wiley India Edition,2nd Edition,2013
- 13. Simon Haykin, _Neural Networks', Pearson Education, 2003.
- 14. John Yen & Reza Langari, _Fuzzy Logic Intelligence Control & Information', Pearson Education, New Delhi, 2003.
- 15.M.Gen and R, Cheng, Genetic algorithms and optimization, Wiley Series in Engineering Design and Automation, 2000.

Subject code	Subject Name	Tea	ching sche	eme	Credit assigned			
ISDOC8013	Digital	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Image Processing	3	-	-	3	-	-	3

Sub Code		Examination scheme								
	Subject	,	Theory (a	out of 10	0)		Pract			
Sub Couc	Name	Intern	Internal Assessment End		Term	and	Oral	Total		
		Test1	Test2	Avg.	sem Exam	work	Oral			
ISDOC8013	Digital Image Processing	20	20	20	80	-	-	-	100	
				· · · · · · · · · · · · · · · · · · ·			·			

Subject Code	Subject Name	Credits
ISDOC8013	Digital Image Processing	3
Course Objectives	1. To introduce the basic elements of digital image processing.	
	2. To familiarize with 2-D Transforms of digital images.	
	3. Ability to use image enhancement and segmentation techniques.	
	4. To analyze image compression and object recognition algorithms.	
Course Outcomes	Students will be able to-	
	1. Interpret the basic elements of digital image processing.	
	2. Analyze digital images using 2-D transforms.	
	3. Apply spatial filtering and image enhancement techniques in the fi	requency
	domain.	
	4. Analyze image segmentation techniques.	
	5. Apply different image compression techniques.	
	6. Recognize and classify objects and patterns in digital images.	

Module	Contents	Hrs.	CO mapping
1.	Fundamentals of Image Processing: Digital image representation, fundamental steps in image processing, Elements of digital image processing systems, Image fundamentals: Gray, Color and Black and white. Color image models: RGB, CMY, HIS and other models. Various Image Format, Sampling and quantization, Relationship between pixels, Statistical parameters (with respect to DIP): Mean, standard deviation, variance, SNR, PSNR etc.	06	CO1
2.	Image transforms: Basic transformations, Perspective transformation, 2-D Transforms: Fourier transform, Discrete cosine transform, Short time Fourier transform, Gabor transform, Radon transform, SVD, Wavelet Transforms, Hough Transform, Watershed Transform	07	CO2
3.	Image Enhancement: Enhancement by point processing, spatial filtering, enhancement in the frequency domain. Contrast intensification: linear stretching, non-linear stretching, histogram specification, low contrast stretching. Smoothing: Image averaging, mean filter, order statistics filter, edge preserving smoothing. Sharpening: High pass filtering, homomorphic filtering.	07	CO3
4.	Image Analysis and Segmentation: Detection of discontinuities, edge linking and boundary detection, thresholding, region -oriented segmentation Representation and description: Representation schemes, descriptors, regional descriptors, pattern and pattern classes, Introduction Classifiers.	06	CO4
5.	Image Compression: Need, Lossy and lossless compression, Huffman, RLE, LZW, Vector Quantization, Shift codes, Arithmetic coding, BTC, Transform based compression: JPEG, MPEG, JPEG 2000, etc., properties of image compression schemes.	06	CO5
6.	Object Recognition and Applications: Feature extraction, Patterns and Pattern Classes, Representation of Pattern classes, Types of classification algorithms, Minimum distance classifier, Correlation based classifier, Bayes classifier. Applications: Biometric Authentication, Character Recognition, Content based Image Retrieval, Remote Sensing, Medical application of Image processing	07	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books

- 1. Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Pearson Education, 2007.
- 2. S Sridhar, "Digital Image Processing", Oxford University Press, 2016.
- 3. A. K. Jain, "Fundamentals of Digital Image Processing", PHI, 1994
- 4. W. K. Pratt, "Digital Image Processing", John Wiley and Sons, 1996

- 1. Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins, "*Digital Image Processing Using MATLAB*", Tata McGraw Hill Publication, 2009.
- 2. S Jayaraman, S Esakkirajan, T Veerakumar, "Digital Image Processing", Tata McGraw Hill, 2019.

Course Code	Course Name	Teac (Co	ching Sch ontact hou	Scheme chours) Credit Assigned				
	Internet of	Theory	Pract.	Tut.	Theory	TW/Pract.	Tut	Total
150003014	Things (IOT)	3	-	-	3	-	-	3

	Subject Name	Examination scheme								
Sub Code		Theory (out of 100)					Pract.			
		Inter	nal Asses	sment	End sem	Term work	and Oral	Oral	Total	
		Test1	Test2	Avg.	Exam		Oral			
ISDOC8014	Internet of Things (IOT)	20	20	20	80	-	-		100	

Subject Code	Subject Name	Credits					
ISDO8014	Internet of Things (IOT)	3					
Course objective	 To teach fundamentals of IoT To study data and knowledge management and use of devices technology. To understand IoT architecture and Integration of embedded d with IoT To understand concept of IoT. To learn designing of industrial internet systems. To study overview of Android/ IOS and development tools and 	in IoT evices d Internet					
	of Everything	u miemei					
	Students will be able to-						
	 Demonstrate the knowledge of operation of IoT architecture Identify the various technologies for implementing IoT Discuss various communication Technologies used in IoT 						
 Course Outcome Course Outcome Discuss various communication reclinition gies used in 101 Discuss various communication models and protocols used in 101 Discuss about the role of cloud computing in IoT Illustrate the application of IoT in Industrial Automation and ider Real World Design Constraints. 							

Module	Content	Hrs.	CO Mapping
1	Introduction to Internet of Things: An Overview Introduction – Definition and characteristics of IoT, Physical design of IoT- Things in IoT, IoT protocol, Logical design of IoT – IoT functional blocks, IoT Communication Models, IoT communication APIs.	04	CO1
2	IoT Enabling Technology Wireless Sensor Networks, Cloud Computing, Big Data Analytics, Communication Protocols, Embedded Systems. IOT Levels and Deployment Templates.	04	CO2
3	Introduction to Communication Technologies 802.15.4, ZigBee, BLE, WiFi, LORA, GSM basic protocol , topologies, data rate, range, power, computations/bandwidth, QoS	10	CO3
4	Communication Model and Protocols M2M vs IOT, Resource Management, Registration, Discovery Data Exchange Formats - XML & JSON, MQTT Protocol, RESTFul Architecture, HTTP REST Model, CoAP Protocol	09	CO4
5	Basics of Cloud Computing Cloud Based Architecture, Basics of Virtualization ° Specific Characteristics that Define a Cloud, Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) Cloud Delivery Models, Public Cloud, Private Cloud, Hybrid Cloud and Community Cloud Deployment Models, Benefits, Challenges and Risks of Cloud Computing Platforms and Cloud Services	06	CO5
6	Case Studies of IOT Home (Smart Lighting and Intrusion detection), Cities (Smart Parking, Garbage collection), Environment (Pollution detection, Forest Fire Detection), Power (Smart Grid), Retail (Inventory Management), Logistics (Fleet Tracking) Industry (Machine Diagnosis & Prognosis), Health (Monitoring and Detection), Agriculture (Green House Monitoring, Animal Husbandry.	06	CO6

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Vijay Madisetti and Arshdeep Bahga, -Internet of Things (A Hands-on-Approach)l, 1stEdition, VPT, 2014.
- 2. Cloud Computing Black Book Edition-2014 by Jagannath Kallakurchi Wiley India

- 1. Francis DaCosta, -Rethinking the Internet of Things: A Scalable Approach to Connecting Everything^I, 1st Edition, Apress Publications, 2013
- 2. Wimer Hazenberg, Menno Huisman and Sara Cordoba Rubino, -Meta Products: Building the Internet of Things^{||}, BIS publisher

Sub code	Subject Nome	Teaching Sc	Credit Assigned					
	Subject Mame	Theory	Pract	Tut.	Theory	Pract.	Tut.	Total
ISDOC8015	Advanced							
	Biomedical	3	-	-	3	-	-	3
	Instrumentation							

	Subject Name		Examination Scheme							
		Т	heory (ou	it of 10	0)		Dreat			
Sub code		Internal Assessment (out of 20)			End sem	Term Work	and	Oral	Total	
		Test 1	Test 2	Avg	Exam		01 a1			
ISDOC8015	Advanced									
	Biomedical	20	20	20	80	-	-	-	100	
	Instrumentation									

Subject Code	Subject Name	Credits								
ISDOC8015	Advanced Biomedical Instrumentation	3								
Prerequisite	 Students should have knowledge about anatomy and physiology Students should possess knowledge of various bio-signals and the measurement methods Students should be aware of basic principle of working of medic techniques 	of human body eir basic al imaging								
Course Objectives	 To make students understand the working principle and appl Advanced Biomedical Instruments used in Biomedical field To make students understand the working and applicat techniques in depth. 	 To make students understand the working principle and application of various Advanced Biomedical Instruments used in Biomedical field To make students understand the working and applications of imaging techniques in depth 								
Course Outcomes	 The students will be able to- Identify various Bio-potential with their specifications, design signation for the same and perform their measurements. Discuss various prosthetic devices and to identify their parameter operation. Explain the principle and working of various patient monitoring systems. Distinguish between the various medical imaging techniques bas principles and concepts involved in them. Discuss the applications of fibre optics and lasers in Biomedical. Describe the significance of radiation, electrical and fire safety in measurement. 	gnal conditioning rs for proper and telemetry ed on the n biomedical								

Module	Topics	Hrs.	CO Monning
			Mapping
1	Introduction to Bio-potential Measurement: Measurement of membrane potentials, Bio-potential amplifiers, ECG, EEG and EMG measurements, Design of ECG, EEG and EMG signal conditioning circuit.	06	CO1
	Prosthetic devices:		
2	Pacemakers – types and constructional details, Implantable defibrillators, Cochlear implants – principle, working and construction, Retinal implants - principle, working and construction, Wearable Artificial Kidney, Functional electrical stimulator (FES)	08	CO2
	Patient monitoring system:		
3	Bedside monitor, Central Nurse station, Drug delivery system with instrumentation, Telemetry system	03	CO3
4	Advanced Medical Imaging: Computed Tomography (CT) - Details of Acquisition, Digital image reconstruction and display, Magnetic resonance imaging (MRI) – image acquisition and reconstruction techniques, Nuclear Imaging – nuclear radiation detectors, rectilinear scanner, gamma camera, positron emission tomography (PET), single photon emission computer tomography (SPECT)	10	CO4
5	Fibre optics and Lasers for Biomedical applications: Optical Sources and Detectors: Introduction, LED's, LASER diodes, Photo detectors – PIN photo diode, avalanche photo diode. Introduction to Fibre Couplers and Connectors, Lasers and its types, properties of lasers and interaction with tissues, Basic endoscope and laparoscope system.	08	CO5
6	Radiation, Electrical and Fire Safety: Radiation safety, Safety precautions, Hazardous effects of radiation, allowed levels of radiation, sources of shocks, macro & micro shocks, monitoring and interrupting the operation from leakage current - Elements of fire, causes of fire & fire protection.	04	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1) Leslie Cromwell, "Biomedical Instrumentation and Measurements", 2nd Edition, Pearson Education, 1980.
- 2) John G. Webster, "Medical Instrumentation", John Wiley and Sons, 4th edition, 2010.
- 3) R. S. Khandpur, "Biomedical Instrumentation", TMH, 2004
- 4) Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", PHI/Pearson Education, 4th edition, 2001.

- 1) Richard Aston, "Principles of Biomedical Instrumentation and Instruments", PH, 1991.
- 2) John E Hall, Gyton's Medical Physiology, 12th edition, 2011
- 3) L. E. Baker L. A. Geddes, "Principles of Applied Biomedical Instrumentation", John Wiley and Sons, 3rd Edition, 1991.

Subject code	Subject Name	Teaching scheme			Credit assigned				
ISDOC8021	Advanced	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Signal Processing	3	-	-	3	-	-	3	

Sub Code	Subject Name	Examination scheme								
		r	Гheory (о	out of 10	0)		Pract			
		Internal Assessment			End	End Term		Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
ISDOC8021	Advanced Digital Signal Processing	20	20	20	80	-	-	-	100	

Subject Code	Subject Name	Credits						
ISDOC8021	Advanced Digital Signal Processing	3						
Course Objectives	 To introduce the basic concepts of multi-rate signal processing. To familiarize with linear prediction and power spectrum estimatitechniques. Ability to apply the time-frequency transforms in signal analysis. To understand the basic concepts of Digital Signal Processor and filtering for practical applications. 	on adaptive						
Course Outcomes	Students will be able to:	Students will be able to:						
	1. Describe the basic concepts of multi-rate DSP.							
	 Apply linear prediction algorithms in real-time applications. Estimate the power spectrum for random signals. 							
 4. Apply adaptive filters in noise and echo cancellation application 5. Analyze the signals in time-frequency domain using STFT and 6. Implement real-time signal processing applications using Digital Processor. 								

Module	Contents	Hrs.	CO Mapping
1.	Multi-rate digital signal processing : Basic multi-rate operation (up sampling, down sampling), Efficient structures for decimation and interpolation, Decimation and interpolation with polyphase filters, non-integer sampling rate conversion, Efficient multi-rate filtering Applications.	06	CO1
2.	Linear prediction: Innovations Representation of a Stationary Random Process, Forward and Backward linear prediction, Solution of the Normal Equations, Properties of linear prediction-Error Filter, AR Lattice and ARMA Lattice-Ladder Filters.	07	CO2
3.	Power spectral estimation : Periodogram based nonparametric methods: Periodogram, Bartlett's method, Welch's method, Blackman-Tukey method Parametric methods for power spectrum estimation: ARMA modelling, Yule- Walker equation and solution.	06	CO3
4.	Adaptive filtering: Principles of Adaptive filtering, LMS and RMS Algorithms, Applications in noise and echo cancellation, Homomorphic Signal Processing, homomorphic system for convolution, properties of complex-spectrum, Applications of homomorphic deconvolution.	07	CO4
5.	Time-frequency Analysis : Fourier Transform: Its power and Limitations, Short Time Fourier Transform, The Gabor Transform, Discrete Time Fourier Transform and filter banks, Continuous Wavelet Transform, Discrete Wavelet Transform, Haar Wavelet, Daubechies Wavelets.	06	CO5
6.	Digital Signal Processor (TMS320C67XX, ADSP-21XX, SHARC): Introduction to fixed point and floating-point DSP processor, Features of DSP processor, architecture of DSP processor, architecture features: computational units, bus architecture memory, data addressing, address generation unit, program control, program sequencer, pipeling, interrupts, features of external interfacing, on-chip peripherals, hardware timers, host interface port, clock generators, SPORT.	07	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.

- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

1. J. Proakis, Charles M. Rader, Fuyun Ling, Christopher L. Nikias, "Advanced Digital Signal Processing", (Macmillan Coll Div) (1992)

2. Glenn Zelniker, Fred J. Taylor, "Advanced Digital Signal Processing", (CRC Press) (1994)

Reference Books:

- 1. A.V. Oppenheim and R.W. Schafer, "Discrete time Signal Processing", (Prentice Hall) (1992)
- 2. Haykins, "Adaptive Filter theory", (Prentice Hall) (1986)

3. Dr. Rulph Chassaing , "Digital Signal Processing and Application with the TMS 320c6713 and TMS 320c6716", Wilay Publication.

4. Raghuveer. M. Rao, Ajit S. Bopardikar, Wavelet Transforms, Introduction to Theory and applications, Pearson Education, Asia, 2000.

5. Introduction to Wavelets and Wavelet Transform: C. S. Burrus, Ramesh and A. Gopinath, Prentice Hall Inc.

Subject code	Subject Name	Tea	ching sche	eme	Credit assigned				
ISDOC8022	Building	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Automation	3	-	-	3	-	-	3	

	Subject Name	Examination scheme								
Sub Codo		r	Гheory (о	out of 10	0)		Pract		Total	
Sub Code		Intern	al Assess	ment	End	Term	and Oral	Oral		
		Test1	Test2	Avg.	sem Exam	work				
ISDOC8022	Building Automation	20	20	20	80	-	-	-	100	

Subject Code	Subject Name	Credits
ISDOC8022	Building Automation	3
Course Objectives	 To brief students with origin and evolution of building automation To train them with architecture and operation of BAS. To facilitate them for designing automation system for intelligent Develop technique for preparation of various documents required requirement of safety building. 	n. building. for design
Course Outcomes	 The students will be able to: 1. Explain the concept of intelligent building and BAS. 2. Select the hardware and design of HVAC in building automation 3. Discuss the concept of energy management system. 4. Design and implement the safety system for building. 5. Design security and video management system for building. 6. Integrate the different system in BAS. 	system.

Module	Contents	Hrs.	CO Mapping
1.	 Introduction to intelligent buildings and BAS: Definitions of intelligent building, Intelligent architecture and structure, Facilities management vs. intelligent buildings, Technology systems and evolution of intelligent buildings. Building Automation System: Features, Characteristics, Drawbacks of Building Automation system. Various Systems of Building Automation – Building Management System, Energy Management System, Security System, Safety System, Video Management System. 	05	CO1
2.	 HVAC system: Introduction, HVAC, Components of HVAC, AHU, Control of CAV systems, Control of VAV systems, AC Plant Room – Concept, Components, Refrigeration Cycle Working Principle, Chiller Sequencing, AC Plant Sequencing. Feedback Control Loops, optimal control methods used for HVAC systems, Direct Digital Control (DDC) Psychrometry –Concept, ASHRAE Psychrometric Chart, Meaning of Various Terms – DBT, WBT, ST, RH, DPT, Sensible & Latent Cooling & Heating, Numerical. 	10	CO2
3.	Energy Management System: Concept, Energy Meters, Types, Meter Networking, Monitoring Energy Parameters, Analysis of Power Quality – Instantaneous Power, Active Power, Reactive Power, Power Factor, Voltage, Current. Effect of Power Quality on Energy Consumption, Energy Reports, Energy Conservation, Importance of Energy Saving.	04	CO3
4.	Safety Systems: Introduction, Fire –Meaning, Fire Development Stages, Fire Sensors & Detectors, Detector Placement, and Detectors Required for Various Applications. Fire Extinguishing Principles, Fire Extinguishers & Its Classification. Fire Alarm System – Controllers, Components, Features, Concept of Fire Loop & Fire Devices, 2-Wire & 4-Wire Loops, Working Principle, System Description, Pre-alarm, Alarm, Trouble, Fault, Differences, Cable Selection, Installation Guidelines Best Installation Practices, NFPA and IS2189 standards	08	CO4
5.	Security Systems: Introduction, Access Control – Concept, Components, Types, Features, Card Technologies, Protocols, Controllers, Concept of Anti passback, Biometrics, Cabling, Intrusion Detection System – Sensors, Working Principle Video Management: Video Door phone, CCTV Cameras, CCD Camera Basics, Traditional CCTV System, Video Recording, Drawbacks, Digital Video Recording, Features, Functionalities, Digital Vs Analog Recording, Digital Video	08	CO5

	Management System – Introduction, Features, Advancements & Differences from Earlier Video Techniques, TCP/IP Networking Fundamentals, System Network Load Calculations, Network Design.		
6.	Integrated Systems: Introduction, Integration of Building Management System, Energy Management System, Safety System, Security Systems & Video Management, Benefits of Integrated Systems, Challenges, Future Prospects of Integrated Systems.	04	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.

3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.

4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Shengwei Wang, "Intelligent Buildings and Building Automation", 2009.
- 2. Reinhold A. Carlson, Robert A., Di Giandomenico, "Understanding Building Automation Systems: Direct Digital Control, Energy Management, Life Safety, Security Access Control, Lighting, Building", 1991

- 1. Roger W. Haines, "HVAC system Design Handbook", 2003.
- 2. National Joint Apprenticeship & Training Committee, "Building Automation System Integration With Open Protocols: System Integration With Open Protocols", 2009.
- 3. John I. Levenhagen and Donald H. Spethmann, "HVAC Controls and Systems", 1992.
- 4. James E. Brumbaugh, "HVAC fundamentals", 2004

Subject code	Subject Name	Tea	ching sche	eme	Credit assigned				
ISDOC8023	Functional	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Safety	3	-	-	3	-	-	3	

Sub Code	Subject Name	Examination scheme								
		r	Гheory (о	out of 10	0)		Pract			
		Internal Assessment			End	Term	and	Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
ISDOC8023	Functional Safety	20	20	20	80	-	-	-	100	

Subject Code	Subject Name	Credits
ISDOC8023	Functional Safety	3
Course Objectives	To make the students aware of basic concepts of safety instrumented	l system,
	standards and risk analysis techniques.	
Course Outcomes	The students will be able to:	
	 Define the role of Safety instrumented system in the industry. Describe steps involved in Safety life cycle Explain process and safety control with SIS technologies. Calculate combined probability for different types of events. Analyse the potential hazards in the process. Determine the Safety integrity level 	

Prerequisite: Digital Electronics, transducers and Process Control

Module	Contents	Hrs.	CO mapping
1	 Introduction: Safety Instrumented System (SIS) - need, features, components, difference between basic process control system and SIS, Risk: how to measure risk, risk tolerance, Safety integrity level, safety instrumented functions. Standards and Regulation – HSE-PES, AIChE-CCPS, IEC-61508, IEC 61511 (2-16), ANSI/ISA-84.00.01-2004 (IEC 61511 Mod) & ANSI/ISA – 84.01-1996.9, NFPA 85.10, API RP 556,11, API RP 14C,11, OSHA (29 CFR 1910.119 – Process Safety Management of Highly Hazardous Chemicals), 	05	CO1

	Safety life cycle:		
2	Standards and safety life cycle, analysis phase, realisation phase, operations phase Allocation of Safety Functions to Protection Layers, Develop Safety Requirements Specifications, SIS Design and Engineering, Installation, Commissioning and Validation, Operations and Maintenance, Modification, De-commissioning.	05	CO2
3	 Process Control – Active / Dynamic, Safety Control – Passive / Dormant, Demand Mode vs. Continuous Mode, Common Cause and Systematic or Functional Failures, Protection Layers: prevention and mitigation layers, SIS Technologies: Pneumatic Systems, Relay Systems, Solid State Systems, Microprocessors / PLC (Software based) Systems 	05	CO3
4	Rules of Probability: Assigning probability to an event, types of events and event combination, combining event probabilities, fault tree analysis, failure rate and probability, simplifications and approximations.	06	CO4
5	 Process Hazard Analysis: Consequence analysis: Characterization of potential events, dispersion, impacts, occupancy considerations, consequence analysis tools. Likelihood analysis: estimation and statistical analysis, fault propagation, event tree analysis and fault tree analysis, Quantitative layer of protection analysis: multiple initiating events, estimating initiating event frequencies and IPL failure probabilities, HAZOP and SIL calculation and verification. 	12	CO5
6	Determining the Safety Integrity Level (SIL): Evaluating Risk, Safety Integrity Levels, SIL Determination Method: As Low as Reasonably Practical (ALARP), Risk matrix, Risk Graph, Layers of Protection Analysis (LOPA)	06	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

- 1. Paul Gruhn and H Jarry L. Cheddie," Safety Instrumented systems: Design, Analysis and Justification", ISA, 2nd edition, 2006
- 2. Dr. Eric W Scharpf, Heidi J Hartmann, Harlod W Thomas, "Practical SIL target selection: Risk analysis per the IEC 61511 safety Lifecycle", exida, 2012.
- 3. Ed Marszal, Eric W Scharpf, "Safety Integrity Level Selection", ISA.

Subject code	Subject Name	Tea	ching sche	eme	Credit assigned				
ISDOC8024	Power Plant	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
15000024	Instrumentation	3	-	-	3	-	-	3	

Sub Codo	Subject Name	Examination scheme								
		ſ	Theory (o	out of 10)0)		Pract			
Sub Couc		Internal Assessment			End	Term	and	Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
ISDOC8024	Power Plant	20	20	20	80			_	100	
	Instrumentation	20	20	20	00				100	

Subject Code	Subject Name	Credits	
ISDOC8024	Power Plant Instrumentation	3	
Course Objectives	 To create awareness of energy resources and its scenario in India and worldwide. 		
	2. To study the concept of power generation using various resources.		
	3. To study the role of Instrumentation in power plants.		
	4. To study and compare various power plants for optimal performance.		
	5. To acquire students the knowledge about hazards and safety in handling		
	power plants.		
Course Outcomes	The students will be able to:		
	1.Classify the energy generation resources.		
	2. Illustrate operation and control of thermal power plant equipment.		
	3. Select the sites for hydroelectric power plants and explain its oper	ration.	
	4. Explain the power generation and control of nuclear power plant.		
	5. Describe the non-conventional energy resources.		
	6. Compare different types of power plants.		

Prerequisite: Knowledge of energy resources, types of power plants and power generation.

Module	Contents	Hrs.	CO mapping
1	Introduction: Energy sources, their availability, worldwide energy production, energy scenario of India. Introduction to Power generation, load curve, load factor. Classification of energy generation resources.	4	CO1
2	Thermal Power Plant - Method of power generation, layout and energy conversion process. Types of Turbines & their control. Boilers and their control. Types of Generators and their control, Types of Pumps and Fans, Material handling system, study of all loops-water, steam, fuel etc. Schematics of Gas turbine and Diesel power plant.	10	CO2
3	Hydroelectric Power Plant - Site selection, Estimation electric power to be developed, classification of Hydro power plants. Types of Turbines for hydroelectric power plant, pumped storage plants, storage reservoir plants.	6	CO3
4	Nuclear Power Plant – Concept of energy generation from nuclear fission, control of chain reaction, schematics of Nuclear power plant, types of reactors, reactor control, safety measures.	6	CO4
5	 Non-conventional Energy Resources – Wind Energy: Power in wind, wind power conversion, aerodynamics of wind turbine, types of wind turbine and their modes of operation, power control of wind turbines and detection of failure, Betz limit, Pitch & Yaw control, connection of wind mill on power grid, applications of wind energy, safety. Solar Energy: Solar resource, solar energy conversion systems. Solar PV technology: Block diagram of PV system, Detection of failure and performance monitoring of PV cell in the array of cells, connection of solar power on power grid, advantages and limitations. Solar thermal energy system: Principle, solar collector and its types, solar concentrator and its types, safety. 	9	CO5
6	Comparison of different types of power plant : On the basis of Performance, efficiency, site selection, Economics-capital and running, safety. Introduction to Hybrid Power Generation concept. Introduction to Modern Biomass, Bio-fuels, Geothermal energy, Tidal energy and Ocean thermal energy.	4	CO6

The Industrial visit is recommended for understanding of different process loops and functioning of the industry.

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.
Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. P. K. Nag, Power plant engineering, Fourth edition (2017), McGraw Hill Education.
- 2. K. Krishnaswamy, M. Ponni Bala, Power Plant Instrumentation, Second edition (2013), PHI.
- 3. R. K. Rajput, A Textbook of Power Plant Engineering, Fifth edition (2016), Laxmi Publications.

Reference Books:

- 1. S.C.Arora, A.V. Domkundwar, Power Plant Engg., (2013), Dhanpat Rai & Co.
- 2. B. H. Khan, Non-conventional energy resources, McGraw Hill, New Delhi.
- 3. Chetan Singh Solanki, Renewable energy Technology, Prentice Hall Publication.
- 4. S. P. Sukhatme, Solar Energy, Tata McGraw Hill, New Delhi.
- 5. G. D. Rai, Nonconventional energy sources, Khanna Publication.
- 6. Dickinson & Cheremision off, Solar Energy Technology vol I & II.
- 7. Tony Burton, David Sharpe, Nick Jenkins, Ervin Bossanyi, Wind Energy Handbook (2001), John Wiley & Sons, ISBN: 0471489972.
- 8. James Manwell, J. F. Manwell, J. G. McGowan, Wind Energy Explained: Theory, Design and Application (2002), John Wiley and Sons Ltd, ISBN: 0471499722
- 9. Z. Lubosny, Wind Turbine Operation in Electric Power Systems (2003), Springer-Verlag New York, Inc ; ISBN: 354040340X.
- 10. Z. Lubosny, Wind Turbine Operation in Electric Power Systems (2003), Springer-Verlag New York, Inc ; ISBN: 354040340X.
- 11. G.F. Gilman, Boiler Control Systems Engineering, 2005, ISA Publication.

Subject code	Subject Name	Теа	ching sche	eme	Credit assigned				
ISDOC8025	Optimal	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	System	3	-	-	3	-	-	3	

Sub Code	Subject Name	Examination scheme									
		Terderer	Theory (o	out of 10)) E 1	Term	Pract.				
		Internal Assessment			End	work	and	Oral	Total		
		Test1	Test2	Avg.	sem Exam	WULK	Oral				
ISDOC8025	Optimal Control System	20	20	20	80	-	-	-	100		

Subject Code	Subject Name	Credits					
ISDOC8025	Optimal Control System	3					
Course Objectives1. To make students understand the optimal control problems their type to solve them by calculus of variation and dynamic programming app 2. To make student to understand the linear regulator and tracking syste discrete time optimal control systems.							
Course Outcomes	 The students will be able to Identify various optimal control problems with performance measureminimum time, minimum fuel, minimum energy, terminal cost and problems. Use the principle of calculus of variation to determine a function that minimizes a specified functional. Derive the necessary conditions for optimal control problem, and op for the linear regulator problem. Understand applications of linear quadratic regulator and tracking static regulator and tracking static problems. Study the method of dynamic programming leads to a functional equips amenable to solution by using simulation software. 	re with general at otimal law ystems. lator and uation that					

Details of Syllabus:

Prerequisite: Knowledge of Linear algebra, Fourier Series, and differential calculus.

Module	Contents	Hrs.	CO mapping
1	Introduction : Formulation of optimal control problem, Performance measure, selecting a performance measure.	04	CO1

2	Calculus of variation I Fundamental concepts: functional, Linearity of functional, closeness, increment, variation, maxima and minima of functional, fundamental theorem of calculus of variation. Extremum of functional of single function: fixed and free end point problems, Extremum of functional of several independent function: fixed and free end point problems	08	CO2
3	Calculus of variation II Constrained extremum of functions: elimination method, Lagrange multiplier method Constrained extremum of functionals: point constraint, differential equation constraints, isoperimetric constraints. The Variational approach to optimal control problems: necessary conditions for optimal control for different boundary conditions	08	CO3
4	Linear Regulator and Tacking Systems: Linear Quadratic Regulator (LQR): Finite time LQR and infinite time LQR Linear Quadratic Tracking Systems: Finite and infinite time Cases	06	CO4
5	Discrete time Optimal control systems : variational calculus for discrete time systems, Discrete time LQR and tracking systems	05	CO5
6	Dynamic Programming : Principle of optimality, application of principle of optimality to decision making, dynamic programming applied to routing problem, Hamilton-Jacobi-Bellman (HJB) equation, LQR system using HJB equation	08	CO6

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books.

- 1. D. S. Naidu, Optimal Control System, CRC Press LLC 2003,
- 2. D. E. Kirk, Optimal Control Theory An Introduction, Dover Publication, New York –1998.

Reference Books

- 1. B.D.O. Anderson and J.B. Moore. *Optimal Control, Linear Quadratic Methods*. Prentice-Hall Inc., Englewood Cliffs, NJ, 1989.
- 2. H. Kwakernaak and R. Sivan. *Linear Optimal Control Systems*. Wiley-Inter science, New York, 1972.
- 3. A. Sage. Optimum systems control. Prentice Hall, 2nd edition, 1977
- 4. F. L. Lewis and V. L. Syrmos. Optimal Control theory. Wiley Inter science, 2nd edition, 1995.
- 5. R. D. Robinett, D. G. Wilson, G. R. Eisler, and J. E. Hurtado. *Applied dynamic programming for optimization of dynamical systems*. Advances in Design and Control. SIAM, Philadelphia, 2005.
- 6. K. Ogata, Discrete Time Control System, Second Edition, PHI, Inc. 1995.

Subject code	Subject Name	Tea	ching sch	eme	Credit assigned			
IOC8021	Project Management (abbreviated as PM)	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		3	-	-	3	-	-	3

Sub Code			Examination scheme									
		1	Theory (out of 1	00)		Pract. and Oral	Oral	Total			
	Subject Name	Intern	al Asses	sment	End	Term						
		Test1	Test2	Avg.	sem Exam	work						
IOC8021	Project Management	20	20	20	80	-	-	-	100			

Course Objectives	 To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.
Course Outcomes	 Student will be able to 1. Apply selection criteria and select an appropriate project from different options. 2. Write work break down structure for a project and develop a schedule based on it. 3. Identify opportunities and threats to the project and decide an approach to deal with them strategically. 4. Use Earned value technique and determine & predict status of the project. 5. Capture lessons learned during project phases and document them for future reference

Module	Contents	Hours
1	Project Management Foundation: Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager. Negotiations and resolving conflicts. Project management in various organization structures PM knowledge areas as per Project Management Institute (PMI)	5
2	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming & performing), team dynamics.	6
3	Project Planning and Scheduling: Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, GANTT chart. Introduction to Project Management Information System (PMIS).	8
4	Planning Projects: Crashing project time, Resource loading and leveling, Goldratt's critical chain, Project Stakeholders and Communication plan. Risk Management in projects: Risk management planning, Risk identification and risk	6

	register. Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks	
5	 Executing Projects: Planning monitoring and controlling cycle. Information needs and reporting, engaging with all stakeholders of the projects. Team management, communication and project meetings. Monitoring and Controlling Projects: Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep. Project audit. Project Contracting Project procurement management, contracting and outcourcing 	8
6	 Project Leadership and Ethics: Introduction to project leadership, ethics in projects. Multicultural and virtual projects. Closing the Project: Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration, Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study. 	б

Reference Books:

- 1. Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK[®] Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
 - 4: Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Tea	ching sch	eme	Credit assigned				
IOC8022	Finance	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	(abbreviated as FM)	3	-	-	3	-	-	3	

	Subject Name		Examination scheme									
		ſ	Theory (out of 1	00)		Pract					
Sub Code		Intern	Internal Assessment			Term	and	Oral	Total			
		Test1	Test2	Avg.	sem Exam	work	Oral					
IOC8022	Finance Management	20	20	20	80	-	-	-	100			

Course Objectives	 Overview of Indian financial system, instruments and market Basic concepts of value of money, returns and risks, corporate finance, working capital and its management Knowledge about sources of finance, capital structure, dividend policy
Course Outcomes	Student will be able to1. Understand Indian finance system and corporate finance2. Take investment, finance as well as dividend decisions

Module	Contents	Hours
1	Overview of Indian Financial System: Characteristics, Components and Functions of Financial System. Financial Instruments: Meaning, Characteristics and Classification of Basic Financial Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of Deposit, and Treasury Bills. Financial Markets: Meaning, Characteristics and Classification of Financial Markets — Capital Market, Money Market and Foreign Currency Market. Financial Institutions: Meaning, Characteristics and Classification of Financial Institutions — Commercial Banks, Investment-Merchant Banks and Stock Exchanges	6
2	 Concepts of Returns and Risks: Measurement of Historical Returns and Expected Returns of a Single Security and a Two-security Portfolio; Measurement of Historical Risk and Expected Risk of a Single Security and a Two-security Portfolio. Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Continuous Compounding and Continuous Discounting. 	6
3	 Overview of Corporate Finance: Objectives of Corporate Finance; Functions of Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision. Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet, 	9

	Profit and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio	
	Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios;	
	Capital Structure Ratios; Stock Market Ratios; Limitations of Ratio Analysis.	
4	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for	10
	Capital Budgeting Decisions; Investment Appraisal Criterion—	
	Accounting Rate of Return, Payback Period, Discounted Payback Period, Net	
	Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and	
	Modified Internal Rate of Return (MIRR) Working Capital Management:	
	Concepts of Meaning Working Capital; Importance of Working Capital	
	Management; Factors Affecting an Entity's Working Capital Needs; Estimation	
	of Working Capital Requirements; Management of Inventories; Management of	
	Receivables; and Management of Cash and Marketable Securities.	

Reference Books:

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
 Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education,
- Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Tea	ching sch	eme		Credit a	ssigned	
	Entrepreneurship	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
IOC8023	Management (abbreviated as EDM)	3	-	-	3	-	-	3

	Subject Name	Examination scheme									
Sub Code		ſ	Theory (out of 1	00)		Pract				
		Internal Assessment			End	Term	and	Oral	Total		
		Test1	Test2	Avg.	sem Exam	work	Oral				
IOC8023	Entrepreneurship Development and Management	20	20	20	80	-	-	-	100		
	-			\frown							

Course	To acquaint with entrepreneurship and management of business
Objectives	Understand Indian environment for entrepreneurship
Objectives	• Idea of EDP, MSME
	Student will be able to
Course	1. Understand the concept of business plan and ownerships
Outcomes	2. Interpret key regulations and legal aspects of entrepreneurship in India
	3. Understand government policies for entrepreneurs

Module	Contents	Hours						
1	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship	4						
2	BusinessPlansAndImportanceOfCapitalToEntrepreneurship:Preliminary and Marketing Plans, Management and Personnel, Start-upCosts andFinancing as well as Projected Financial Statements, Legal Section, Insurance,Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance tothe EntrepreneurEntrepreneurship And Business Development:Starting Business, New Product Development, Business Growth and the							
3	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises							
4	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure	8						

	developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund PMEGP discussions group	
	exercises etc	
	Effective Management of Business: Issues and problems faced by micro and	8
5	small enterprises and effective management of M and S enterprises (risk	
	management, credit availability, technology innovation, supply chain	
	management, linkage with large industries), exercises, e- Marketing	
	Achieving Success In The Small Business: Stages of the small business life	5
6	cycle, four types of firm-level growth strategies, Options - harvesting or closing	
	small business Critical Success factors of small business	

Books Recommended: Reference Books:

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Tea	ching sch	eme		Credit a	ssigned	
	Human Resource	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
IOC8024	Management (abbreviated as HRM)	3	-	-	3	-	-	3

Sub Code	Subject Name	Examination scheme									
		1	Theory (out of 1	00)		Pract				
		Internal Assessment			End	Term	and	Oral	Total		
		Test1	Test2	Avg.	sem Exam	work	Oral				
IOC8024	Human Resource Management	20	20	20	80	-	-	-	100		

r	
	• To introduce the students with basic concepts, techniques and practices of the human
	resource management.
	• To provide opportunity of learning Human resource Management (HRM) processes,
	related with the functions, and challenges in the emerging perspective.
	• To familiarize the students about the latest developments, trends & different aspects of
	HRM.
Course	• To acquain the student with the importance of behavioral skills. Inter- personal, inter-
Objectives	group in an organizational setting.
	• To prepare the students as future organizational change facilitators, stable leaders and
	managers, using the knowledge and techniques of human resource management.
	Learner will be able to
	1. Gain knowledge and understand the concepts about the different aspects of the human
	resource management.
	2. Understand and tackle the changes and challenges in today's diverse, dynamic
	organizational setting and culture.
Course	3. Utilize the behavioral skill sets learnt, in working with different people, teams &
Outcomes	groups within the national and global environment.
	4. Apply the acquired techniques, knowledge and integrate it within the engineering/ non
	engineering working environment emerging as future engineers and managers.

Module	Contents	Hours
1	Introduction to HR: Human Resource Management- Concept, Scope and	05
	Importance, Interdisciplinary Approach Relationship with other Sciences,	
	Competencies of HR Manager, HRM functions. Human resource development	
	(HRD): changing role of HRM – Human resource Planning, Technological change,	
	Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues.	
2	Organizational Behavior (OB) : Introduction to OB Origin, Nature and Scope of	07
	Organizational Behavior, Relevance to Organizational Effectiveness and	
	Contemporary issues, Personality: Meaning and Determinants of Personality,	
	Personality development, Personality Types, Assessment of Personality Traits for	
	Increasing Self Awareness, Perception: Attitude and Value, Effect of perception on	

3	Individual Decision-making, Attitude and Behavior. Motivation: Theories of Motivation and their Applications for Behavioral Change (Maslow, Herzberg, McGregor); Group Behavior and Group Dynamics: Work groups formal and informal groups and stages of group development. Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team. Case study Organizational Structure & Design: Structure, size, technology, Environment of organization; Organizational Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress. Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership. Power and Politics: Sources and uses of power; Politics at workplace, Tactics and	06
	strategies.	
4	Human resource Planning: Recruitment and Selection process, Job- enrichment, Empowerment - Job-Satisfaction, employee morale. Performance Appraisal Systems: Traditional & modern methods, Performance Counseling, Career Planning. Training & Development: Identification of Training Needs, Training Methods	05
5	Emerging Trends in HR : Organizational development; Business Process Re- engineering (BPR), BPR as a tool for organizational development, managing processes & transformation in HR. Organizational Change, Culture, Environment, Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation.	06
6	HR & MIS: Need, purpose, objective and role of information system in HR,	10
	Applications in HRD in various industries (e.g. manufacturing R&D, Public	
	Transport, Hospitals, Hotels and service industries Strategic HRM	
	Role of Strategic HRM in the modern business world, Concept of Strategy,	
	Strategic Management Process, Approaches to Strategic Decision Making;	
	Strategic Intent – Corporate Mission, Vision, Objectives and Goals	
	Labor Laws & Industrial Relations	
	Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act	

Reference Books:

- Stephen Robbins, Organizational Behavior, 16th Ed, 2013
 V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
 Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

University of Mumbai, Instrumentation Engineering, REV 2019 'C' Scheme

Subject code	Subject Name	Tea	ching sch	eme	Credit assigned			
	Professional Ethics	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
IOC8025	Social Responsibility (abbreviated as PECSR)	3	-	-	3	-	-	3

Sub Code		Examination scheme									
		ſ	Theory (o	out of 1	00)		Pract.				
	Subject Name	Intern	Internal Assessment			Term	and	Oral	Total		
		Test1	Test2	Avg.	sem Exam	work	Oral				
IOC8025	Professional Ethics and Corporate Social Responsibility	20	20	20	80	-	-	-	100		

Course	To understand professional ethics in business
Objectives	To recognized corporate social responsibility
Course Outcomes	Student will be able to
	 Understand rights and duties of business Distinguish different aspects of corporate social responsibility Demonstrate professional ethics Understand least sense to a social memory initiality
	4. Understand legal aspects of corporate social responsibility

Module	Contents	Hours
1	Professional Ethics and Business: The Nature of Business Ethics; Ethical	04
	Issues in Business; Moral Responsibility and Blame; Utilitarianism: Weighing	
	Social Costs and Benefits; Rights and Duties of Business	
2	Professional Ethics in the Marketplace: Perfect Competition; Monopoly	08
	Competition; Oligopolistic Competition; Oligopolies and Public Policy	
	Professional Ethics and the Environment: Dimensions of Pollution and	
	Resource Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable	
	Resources	
3	Professional Ethics of Consumer Protection: Markets and Consumer Protection;	06
	Contract View of Business Firm's Duties to Consumers; Due Care Theory;	
	Advertising Ethics; Consumer Privacy	
	Professional Ethics of Job Discrimination: Nature of Job Discrimination; Extent	
	of Discrimination; Reservation of Jobs.	
4	Introduction to Corporate Social Responsibility: Potential Business Benefits-	05
	Triple bottom line, Human resources, Risk management, Supplier relations;	
	Criticisms and concerns-Nature of business; Motives; Misdirection.	
	Trajectory of Corporate Social Responsibility in India	
5	Corporate Social Responsibility: Articulation of Gandhian Trusteeship Corporate	08
	Social Responsibility and Small and Medium Enterprises (SMEs) in India,	
	Corporate Social Responsibility and Public-Private Partnership (PPP) in India	
1		i

Reference Books:

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Teaching scheme				Credit a	ssigned	
IOCODA	Research	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
10C8026	Methodology (abbreviated as RM)	3	-	-	3	-	-	3

		Examination scheme									
Sub Code		1	Theory (out of 1	00)		Pract				
	Subject Name	Internal Assessment			End	Term	and	Oral	Total		
		Test1	Test2	Avg.	sem Exam	work	Oral				
IOC8026	Research Methodology	20	20	20	80	-	-	-	100		

Course Objectives	 To understand Research and Research Process To acquaint students with identifying problems for research and develop research strategies To familiarize students with the techniques of data collection, analysis of data and interpretation
Course Outcomes	 Student will be able to 1. Prepare a preliminary research design for projects in their subject matter areas 2. Accurately collect, analyze and report data 3. Present complex data or situations clearly 4. Review and analyze research findings

Module	Contents	Hours
	Introduction and Basic Research Concepts: Research – Definition; Concept	10
	of Construct, Postulate, Proposition, Thesis, Hypothesis, Law, Principle. Research	
1	methods vs Methodology, Need of Research in Business and Social Sciences ,	
	Objectives of Research, Issues and Problems in Research, Characteristics of	
	Research: Systematic, Valid, Verifiable, Empirical and Critical	
2	Types of Research: Basic Research, Applied Research, Descriptive Research,	08
2	Analytical Research, Empirical Research, Qualitative and Quantitative Approaches	
	Research Design and Sample Design : Research Design - Meaning, Types and	08
3	Significance, Sample Design - Meaning and Significance Essentials of a good	
	sampling Stages in Sample Design Sampling methods/techniques Sampling Errors	
	Research Methodology : Meaning of Research Methodology, Stages in	08
	Scientific Research Process	
	a. Identification and Selection of Research Problem	
	b. Formulation of Research Problem	
4	c. Review of Literature	
	d. Formulation of Hypothesis	
	e. Formulation of research Design	
	f. Sample Design	
	g. Data Collection	

	h. Data Analysis	
	i. Hypothesis testing and Interpretation of Data	
	j. Preparation of Research Report	
5	Formulating Research Problem: Considerations: Relevance, Interest, Data	04
	Availability, Choice of data, Analysis of data, Generalization and Interpretation	
	of analysis	
6	Outcome of Research: Preparation of the report on conclusion reached, Validity	04
	Testing & Ethical Issues, Suggestions and Recommendation	

Reference Books:

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Teaching scheme			cheme Credit assigned			
1009027	IPR and Patenting	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
10C8027	(abbreviated as IPRP)	3	-	-	3	-	-	3

Sub Code	Subject Name	Examination scheme									
		ſ	Theory (out of 1	00)		Pract				
		Internal Assessment			End	Term	and	Oral	Total		
		Test1	Test2	Avg.	sem Exam	work	Oral				
IOC8027	IPR and Patenting	20	20	20	80	-	-	-	100		
		3									

	To understand intellectual property rights protection system						
Course Objectives	• To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures						
	• To get acquaintance with Patent search and patent filing procedure and						
	• applications						
	Student will be able to						
Course	1. understand Intellectual Property assets						
Outcomes	2. assist individuals and organizations in capacity building						
Outcomes	3. work for development, promotion, protection, compliance, and						
	enforcement of Intellectual Property and Patenting						

Module	Contents	Hours
1	Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different	05
	category of IPR instruments - Patents, Trademarks, Copyrights, Industrial	
	Designs, Plant variety protection, Geographical indications, Transfer of	
	technology etc.	
	Importance of IPR in Modern Global Economic Environment: Theories of	
	IPR, Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of	
	development	
2	Enforcement of Intellectual Property Rights: Introduction, Magnitude of	07
	problem, Factors that create and sustain counterfeiting/piracy, International	
	agreements, International organizations (e.g. WIPO, WTO) activein IPR	
	enforcement	
	Indian Scenario of IPR: Introduction, History of IPR in India, Overview of IP	
	laws in India, Indian IPR, Administrative Machinery, Major international treaties	
	signed by India, Procedure for submitting patent and Enforcement of IPR at	
	national level etc.	
3	Emerging Issues in IPR: Challenges for IP in digital economy, e- commerce,	06
	human genome, biodiversity and traditional knowledge etc.	
4	Basics of Patents: Definition of Patents, Conditions of patentability, Patentable	07

	and non-patentable inventions, Types of patent applications (e.g. Patent of	
	addition etc), Process Patent and Product Patent, Precautions while patenting,	
	Patent specification Patent claims, Disclosures and non-disclosures, Patent rights	
	and infringement, Method of getting a patent	
5	Patent Rules: Indian patent act, European scenario, US scenario, Australia	08
	scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a	
	member (TRIPS agreement, Paris convention etc.)	
6	Procedure for Filing a Patent (National and International): Legislation and	07
	Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing	
	of patent, Patent Litigation, Patent Publication etc, Time frame and cost, Patent	
	Licensing, Patent Infringement	
	Patent databases: Important websites, Searching international databases	

Reference Books:

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield,2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- Cornish, William Rodolph&Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- LousHarns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. PrabhuddhaGanguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar andmohdIqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. KompalBansal and PraishitBansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, PritiMathur, AnshulRathi, IPR: Drafting,Interpretation of Patent Specifications and Claims, New India Publishing Agency

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Tea	ching sch	eme	Credit assigned			
	Digital Business	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
IOC8028	(abbreviated as DBM)	3	-	-	3	-	-	3

Sub Code	Subject Name	Examination scheme								
		ſ	Theory (o	out of 1	00)		Pract.			
		Internal Assessment			End	End Term		Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
IOC8028	Digital Business Management	20	20	20	80	-	-	-	100	

Course Objectives	 To familiarize with digital business concept To acquaint with E-commerce To give insights into E-business and its strategies
Course Outcomes	 Student will be able to 1. Identify drivers of digital business 2. Illustrate various approaches and techniques for E-business and management 3. Prepare E-business plan

Module	Contents	Hours
1	Introduction to Digital Business: Introduction, Background and current	09
	status, E-market places, structures, mechanisms, economics and impacts	
	Difference between physical economy and digital economy, Drivers of digital	
	business- Big Data & Analytics, Mobile, Cloud Computing, Social media,	
	BYOD, and Internet of Things(digitally intelligent machines/services)	
	Opportunities and Challenges in Digital Business,	
2	Overview of E-Commerce: E-Commerce- Meaning, Retailing in e-	06
	commerce-products and services, consumer behavior, market research and	
	advertisement B2B-E-commerce-selling and buying in private e- markets,	
	public B2B exchanges and support services, e-supply chains, Collaborative	
	Commerce, Intra business EC and Corporate portals Other E-C models and	
	applications, innovative EC System-From E- government and learning to C2C,	
	mobile commerce and pervasive computing EC Strategy and Implementation-EC	
	strategy and global EC, Economics and Justification of EC, Using Affiliate	
	marketing to promote your e-commerce business, Launching a successful online	
	business and EC project, Legal, Ethics and Societal impacts of EC	

3	Digital Business Support services: ERP as e –business backbone, knowledge	06
	Tope Apps, Information and referral system, Application Development:	
	Building Digital business Applications and Infrastructure	
4	Managing E-Business-Managing Knowledge, Management skills for e-	06
	business, Managing Risks in e -business, Security Threats to e- business -	
	Security Overview, Electronic Commerce Threats, Encryption, ryptography,	
5	E-Business Strategy-E-business Strategic formulation- Analysis of	04
	Company's Internal and external environment, Selection of strategy,	
	E-business strategy into Action, challenges and E-Transition (Process of Digital Transformation)	
6	M Materializing e-business: From Idea to Realization-Business plan	08
	preparation	

Reference Books:

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, Vinocenzo Morabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI:10.1787/9789264221796-en OECD Publishing

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Tea	Teaching scheme Credit assigned					
IOC8029	Environmental	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	(abbreviated as EVM)	3	-	-	3	-	-	3

	Subject Name	Examination scheme									
Sub Code		T	Theory (out of 1	00)		Pract				
		Internal Assessment			End	Term	and	Oral	Total		
		Test1	Test2	Avg.	sem Exam	work	Oral	1			
IOC8029	Environmental Management	20	20	20	80	-	-	-	100		

Course	• Understand and identify environmental issues relevant to India and global concerns						
	Learn concepts of ecology						
Objectives	Familiarise environment related legislations						
	Student will be able to						
Course	1. Understand the concept of environmental management						
Outcomes	2. Understand ecosystem and interdependence, food chain etc.						
	3. Understand and interpret environment related legislations						

Module	Contents	Hours
1	Introduction and Definition of Environment: Significance of Environment	10
	Management for contemporary managers, Career opportunities.	
	Environmental issues relevant to India, Sustainable Development, The Energy scenario.	
2	Global Environmental concerns : Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man-made disasters, Atomic/Biomedical hazards, etc.	06
3	Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.	05
4	Scope of Environment Management, Role & functions of Government as a planning and regulating agency. Environment Quality Management and Corporate Environmental Responsibility	10
5	Total Quality Environmental Management, ISO-14000, EMS certification.	05
6	General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	03

Reference Books:

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Teacl	hing sche	me		Credit a	ssigned	
101 001	Instrument and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
151.901	System Design- Lab	-	2	-	-	1	-	1

Sub CodeSubject NameInternal AssessmentEnd sem examTerm workPract. And oralOralTotalInstrument and ISL801Instrument and Lab25-2550	Sub Code	Subject Name	Examination scheme									
Test1Test2Avg.examoralInstrument and ISL801System Design- Lab25-2550			Internal Assessment			End sem	Term work	Pract. And	Oral	Total		
Instrument and ISL801Instrument and System Design- Lab25-2550			Test1	Test2	Avg.	exam		orai				
	ISL801	Instrument and System Design- Lab	-	-	-	-	25	-	25	50		

Subject Code	Subject Name	Credits
ISL801	Instrument and System Design Lab	1
Course objective	 To impart knowledge of selection and design considerations of transducers along with its calibration techniques. To make the students capable of sizing the control valve. To give the students' knowledge about the types, sizing of con and standards. To make the students capable to apply knowledge to design product, control room layout and its environment. To give the students a comprehension of the aspects of engineering. 	of ntrol panels n electronic f reliability
Course Outcome	 The students will able to: 1. Calculate performance characteristics of a given transducer ar transducers. 2. Select and size the control valves and actuators. 3. Estimate valve noise and predict cavitation. 4. Apply knowledge to design the control panels and control roo 5. Design electronic products and enclosures. 6. Calculate Reliability engineering terms 	nd calibrate

Syllabus: Same as that of Subject ISC801 Instrument and System Design.

List of Laboratory Experiments/ Assignments:

Sr.	Detailed Content	CO Mapping
No.		
1	To study the performance characteristics of transducer/ instrument	CO1
2	To calibrate temperature, flow, pressure or level transducers	CO1
3	To calculate Cv of a given valve (use Cv characteristic set up)	CO2
4	To design the control panel for any one application.	CO4
5	To design the layout of a control room.	CO4
6	Assignment on design of transducers.	C01
7	Assignment on valve sizing for liquid services and gas/vapors.	CO2
8	Assignment on valve sizing for flashing, and mixed flow services	CO2
9	Assignment on estimation of control valve Noise and Cavitation	CO3
10	Assignment: examples on actuator sizing	CO2
11	Assignment on control panel design	CO4
12	Assignment on electronic product design and enclosure design	CO5
13	Assignment on reliability engineering.	CO6
14	Assignment on control room design and its environment	CO4

Any other experiments/assignments based on syllabus which will help students to understand topic/concept.

Note:

- 1) Minimum of four experiments and four assignments can be performed during the semester for term work and oral examination.
- 2) Industry visit is advised to understand the Instrument and System Design subject.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (Assignments)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Tea	ching sch	eme		Credit a	assigned	
	Digital Control	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISL8021	System- Lab		2			1		1

			Examination scheme									
			Theory (out of 100)				Pract					
Subject Code	Subject Name	Inter	Internal Assessment			Term work	and Oral	Oral	Total			
		Test1	Test2	Avg.								
ISL802	Digital Control System-Lab					25	-	25	50			

Subject Code	Subject Name	Credits
ISL802	Digital Control System Lab	1
Course Objectives	1. The students should be able to determine response of ZOH and H	FOH
	2. The students should be able to discretize continuous data system	
	3. The students will be able to represent given system into different	t canonical
	form.	
	4. The students should able to determine state transition matrix	
	3. Students can be able to design controller and observer	
Course Outcomes	Students will be able to –	
	1.Compare the response with reconstruction due to ZOH and FOH.	
	2.Discretize the analog systems and signals with different methods	
	3. Verify the controllability and observability of systems	
	4. Demonstrate their knowledge to obtain different canonical forms and verify using simulation software	analytically
	5. Determine state transition matrix using simulation software and	l verify the
	results analytically	
	6. Design controller and observer for the given system	

Syllabus: Same as that of Subject ISDOC8011Digital Control System.

List of the Laboratory Experiments:

Module	Contents	CO mapping
1.	To determine response of zero order hold and first order hold using simulation software	CO1
2.	Mapping from S- plane to Z-plane analytically and verification using simulation software	CO2
3.	Discretization of continuous data system using i) Step invariance method, ii) Impulse invariance method, and iii) Bilinear transformations, analytically and verification using simulation software	CO2
4.	To check controllability and observability of a given system analytically and verify the result using simulation software.	CO3
5.	To represent given system in different canonical forms, analytically and verification using simulation software	CO4
6.	To determine pulse transfer function of a given system analytically and its verification using simulation software	CO4
7.	Determination of state transition matrix analytically and its verification using simulation software	CO5
8.	To design the controller by any method	CO6
9.	To design an observer by any method	CO6

Any other experiment based on syllabus which will help students to understand topic/concept.

Note: Student can use any simulation software.

Practical and Oral Examination:

Practical and Oral examination will be based on entire syllabus of ISDOC 8011 Digital Control System.

Term Work:

Term work shall consist of minimum 08 experiments.

The distribution of marks for term work shall be a	s follows:
Laboratory work (Experiments):	10 Marks
Laboratory work (programs / journal):	10 Marks
Attendance:	05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Course code	Subject Name	Tea	ching sch	eme		Cro	edit assigne	ed
ISL8022	Expert System-	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Lab	-	2	-	-	1	-	1

			Examination scheme								
			r	Theory (10							
Sub	Subject Name	Intern	al Assessm	ent (20)	End	Term	Pract. and				
Code		Test 1	Test2	Avg.	sem Exam	work	Oral	Oral	Total		
ISL8022	Expert System- Lab	-	-	-	-	25	-	25	50		

Subject Code	Subject Name	credits					
Subject Couc	Subject Name	cicuits					
ISL8022	Expert System Lab	3					
Course objective	1. To provide an understanding on the fundamentals of Artificial						
	Intelligence and Expert System.						
	2. To provide an understanding on the fundamentals of neural net	work.					
	3. To provide an understanding on the fundamentals of fuzzy syst	tems.					
	4. To provide an understanding of Neuro fuzzy system.						
	5. To provide an understanding of applications based on Artificial						
	Intelligence and Expert System.						
Course Outcome	The students will able to						
	1. Develop programs for various neural networks.						
	2. Write program for advance neural networks.						
	3. Simulate fuzzy inference system.						
	4. Develop programs for neuro fuzzy systems.						
	5. Demonstrate working of AI/Expert systems in Process control, Electrical						
	Engineering.						
	6. Demonstrate working of AI/Expert systems in Speech processi	ng, medical					
	diagnosis.						

Syllabus: Same as that of Subject ISDOC8012 Expert System.

List of the Laboratory Experiments:

Sr. No.	Contents	CO Mapping
1.	Write a python program to construct and simulate single input neurons. Simulate with different weights, transfer functions, etc.	CO1
2.	Write a python program to construct and simulate multi-input neurons. Simulate with different weights, transfer functions, etc.	CO1
3.	Write a python program for back propagation algorithm.	CO1
4.	Write a python program to simulate recurrent neural network.	CO2
5.	Write a python program to simulate convolutional neural network.	CO2
6.	Write a python program to simulate mamdani fuzzy inference system.	CO3
7.	Write a python program to simulate sugeno fuzzy inference system.	CO3
8.	Write a python program to simulate neuro fuzzy systems.	CO4
9.	Case study or mini project on application of AI/Expert systems in Process control.	CO5
10.	Case study or mini project on application of AI/Expert systems in Electrical Engineering.	CO5
11.	Case study or mini project on application of AI/Expert systems in Speech processing.	CO6
12.	Case study or mini project on application of AI/Expert systems in medical diagnosis.	CO6

Any other experiment based on syllabus which will help students to understand topic/concept.

Practical and Oral Examination:

Practical and Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 8 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) :	10 Marks
Laboratory work (programs / journal):	10 Marks
Attendance :	05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject code	Subject Name	Te	aching sch	eme		Credit a	ssigned	
ISL8023	Digital Image Processing Lab	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		-	2	-	-	1	-	1

	Subject Name		Examination scheme									
Sub Code			Theory (out of 10)0)		Pract					
		Internal Assessment			End	Term	and	Oral	Total			
		Test1	Test2	Avg.	sem Exam	work	Oral					
ISL8023	Digital Image Processing Lab	-	-	-	-	25	-	25	50			

Subject Code	Subject Name	Credits
ISL8023	Digital Image Processing Lab	1
Course	1. To introduce the basic elements of digital image processing.	
Objectives	2. To familiarize with 2-D Transforms of digital images.	
	3. Ability to use image enhancement and segmentation techniques.	
	4. To analyze image compression and object recognition algorithms.	
Course	Students will be able to:	
Outcomes	1. Interpret the basic elements of digital image processing.	
	2. Analyze digital images using 2-D transforms.	
	3. Apply spatial filtering and image enhancement techniques in the frequency	domain.
	4. Analyze image segmentation techniques.	
	5. Apply different image compression techniques.	
	6. Recognize and classify objects and patterns in digital images.	

List of Experiments:

Sr. No.	Contents	CO Mapping
1.	To perform basic operations on images.	CO1
2.	To perform conversion between color spaces.	CO1
3.	To perform 2D DFT/ DCT of images	CO2
4.	To perform histogram equalization.	CO3
5.	To perform image filtering in spatial domain	CO3
6.	To perform image filtering in frequency domain.	CO3
7.	To perform edge detection using various masks	CO4
8.	To perform global and adaptive thresholding	CO4
9.	To perform image compression using DCT / Wavelet transform.	CO5
10.	To apply morphological operators on an image	C06

Any other experiment based on syllabus which will help students to understand topic/concept.

Practical and Oral Examination:

Practical and Oral examination will be based on entire syllabus of **ISDOC8013** Digital Image Processing subject

Term Work:

Term work shall consist of minimum 08 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	:	10 Marks
Laboratory work (programs / journal)):	10 Marks
Attendance	:	05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject Code	Subject Name	Teaching Scheme Credits Assigned						
ISL8024	Internet of Things-	Theory	Pract.	Tut.	Theory	Pract/Oral.	Tut.	Total
	Lad	-	2	-	-	1	-	1

		Examination scheme								
Subject		Т	heory N	Iarks (100)					
Code	Subject Name	Interna	al Asses (20)	sment	End	End Term Som Work		Oral	Total	
		Test1	Test2	Avg.	Exam	\frown	Orai			
ISL8024	Internet of Things- Lab	-	-	-		25	-	25	50	

Subject Code	Subject Name	Credits
ISL8024	Internet of Things- Lab	1
Course objectives	 To impart knowledge about fundamentals of IoT To describe data and knowledge management and use of devices To give knowledge of IoT architecture and Integration of embedde IoT To explain the concept of IIoT. To impart knowledge about designing of industrial internet system To describe overview of Android/ IOS app development tools an Everything 	in IoT technology. led devices with ms. d Internet of
Course Outcomes	 The students will be able to: Describe Fundamentals of IoT and make use of microcontroller baplatforms in IOT. Identify IoT enabling technologies and make use of microprocessor platforms in IOT. Apply wireless technology for exchange of data. Make use of Cloud platform to upload and analyse any sensor data communication protocols used in IoT. Use of Devices, Gateways and Data Management in IoT. Use the knowledge and skills acquired during the course to build a working IoT system involving prototyping, programming and data 	used embedded or based embedded a and understand and test a complete, a analysis.

Syllabus: Same as that of Subject ISDOC8014 Internet of Things

List of Laboratory Experiments/ Assignments:

Sr. No.	Detailed Content	CO Mapping
1	Assignment on Fundamentals and overview of IoT	CO1
2	Assignment on IoT enabling technologies	CO2
3	Introduction to Arduino platform and programming	CO1, CO5
4	Interfacing LDR sensor and LED with Arduino	CO1, CO5
5	Interfacing accelerometer sensor with Arduino	CO1, CO5
6	Interfacing gyroscope sensor with Arduino	CO1, CO5
7	Interfacing Arduino to Zigbee module	CO1, CO3
8	Interfacing Arduino to GSM module	CO1, CO3
9	Interfacing Arduino to Bluetooth Module	CO1, CO3
10	Assignment on communication protocols in IoT	CO4
11	Introduction to Raspberry PI platform and python programming	CO2
12	Interfacing sensors to Raspberry PI	CO2, CO5
13	Setup a cloud platform to log the data	CO4
14	Log Data using Raspberry PI and upload to the cloud platform	CO4, CO5
15	Design an IOT based system	CO6

Any additional experiments/assignments based on syllabus which will help students to understand topic/concept.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 8 experiments and two assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments)	: 10 Marks
Laboratory work (programs / journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Tea	ching sch	eme		Credit a	ssigned	
	Advanced Biomodical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISL8025	Instrumentation		2			1		1
	Lab							

					Examinat	ion schen	ne		
		1	Theory (out of 10)0)		Pract		
Subject Code	Subject Name	Internal Assessment			End sem Exam	Term work	and Oral	Oral	Total
		Test1	Test2	Avg.					
ISL8025	Advanced Biomedical Instrumentation Lab			-	i	25	-	25	50

Subject Code	Subject Name	Credits
ISL8025	Advanced Biomedical Instrumentation Lab	1
Course objective	 To make students perform experiments based on the principle working of various Biomedical Instruments used for Bio-po measurements To develop skills in the design of various biomedical instrum in diagnosis and life-support. 	e and atential atents used
Course Outcome	 Students will be able to- Design ECG, EEG, EMG amplifier. Design and/ or simulate prosthetic devices circuitry. Design circuitry required for patient monitoring systems and Distinguish between the various medical imaging techniques comparing, principle and concept involved in each of the tec Use fiber optics for healthcare application. Describe the significance of electrical safety in biomedical measurement. 	telemetry by hnique

Syllabus: Same as that of Subject ISDOC8015 Advanced Biomedical Instrumentation.

List of the Laboratory Experiments:

Module	Contents	CO mapping
1.	Design and implement ECG amplifier circuitry.	CO1
2.	Design and implement EEG amplifier circuitry.	CO1
3.	Design and implement EMG Quantification circuit.	CO1
4.	Design Cochlear implant circuitry.	CO2
5.	Simulate Hemodialysis machine.	CO2
6.	Design the multiplexing circuitry for a bedside monitor.	CO3
7.	Design and / or simulate patient drug delivery system.	CO3
8.	Design and/or simulate ECG/EMG telemetry system	CO3
9.	Assignment on image reconstruction of CT.	CO4
10.	Distinguish imaging techniques such as MRI, PET and SPECT.	CO4
11.	Simulate characteristics of optical fiber.	CO5
12.	Validate characteristics of photo detector	CO5
13.	Assignment on Radiation, Electrical Safety and Fire safety in biomedical.	CO6

Any other experiment based on syllabus of Advanced Biomedical Instrumentation, which will help students to understand topic/concept.

Practical and Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 06 experiments from the above given list and 02 assignments. (All six COs must be covered) Hospital visit is recommended

The distribution of marks for term work shall be as follows:Laboratory work (Experiments/ Assignments) :10 MarksLaboratory work (Journal/visit):10 MarksAttendance:05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Theory Pract. Tut. Theory Pract. Tut. Tot	
ISD801 Major Drajact II	tal
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Indicates workload of Learner (Not Faculty)

			Examination scheme						
Sub	Subject Name		Theory (out of 1)0)		Pract.		
Code	Subject Name	Internal Assessment			End	Term	and	Oral	Total
		Test1	Test2	Avg.	sem Exam	work	Oral		
ISP801	Major Project – II					100		50	150

Subject Code	Subject Name	Credits						
ISP801	Major Project – II	3						
Course Objectives	 The course is aimed 1. To acquaint with the process of identifying the needs and converting it into the problem. 2. To familiarize the process of solving the problem in a group. 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems. 4. To inculcate the process of self-learning and research. 							
Course Outcomes	 On successful completion of course learner/student will be able to Identify problems based on societal /research needs. Apply Knowledge and skill to solve societal problems in a group Develop interpersonal skills to work as member of a group or 1 Draw the proper inferences from available results through theorexperimental/simulations. Analyze the impact of solutions in societal and environmental context for sustainable development. Use standard norms of engineering practices Excel in written and oral communication. Demonstrate capabilities of self-learning in a group, which learlifelong learning. Demonstrate project management principles during project work 	: leader. pretical/ ds to ork.						

Guidelines for Major Project

- Students should form groups with minimum 2(two) and not more than 4 (four)
- Students should do survey and identify needs, which shall be converted into problem statement for major project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Student shall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of major project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during major project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the major Projects.

Guidelines for Assessment of Major Project:

Term Work

- The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of major project to be evaluated on continuous basis, minimum two reviews in the semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
• Distribution of Term work marks for both semesters shall be as below;

0	Marks awarded by guide/supervisor based on log book	: 30
0	Marks awarded by review committee	: 30
0	Quality of Project report	: 40

Review/progress monitoring committee may consider following points for assessment.

- In VIII semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
 - First review is based on readiness of building working prototype to be conducted.
 - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

Assessment criteria of Major Project-II

Major Project-II shall be assessed based on following criteria;

- 1. Cost effectiveness and Societal impact
- 2. Full functioning of working model as per stated requirements
- 3. Effective use of skill sets
- 4. Effective use of standard engineering norms
- 5. Contribution of an individual's as member or leader
- 6. Clarity in written and oral communication

Guidelines for Assessment of Major Project Practical/Oral Examination:

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Major Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organizations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Major Project shall be assessed based on following points:

- 1 Quality of problem and Clarity
- 2 Innovativeness in solutions
- 3 Cost effectiveness and Societal impact
- 4 Full functioning of working model as per stated requirements
- 5 Effective use of skill sets
- 6 Effective use of standard engineering norms
- 7 Contribution of an individuals as member or leader
- 8 Clarity in written and oral communication
