UNIVERSITYOFMUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

FACULTY OF TECHNOLOGY

Electronics Engineering

Second Year with Effect from AY 2017-18 Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

Co-ordinator, Faculty of Technology's Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

Chairman's Preamble:

Engineering education in India is expanding and is set to increase manifold. Themajor challenge in the current scenario is to ensure quality to the stakeholders along with expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating the philosophy of outcome based education in the process of curriculum development.

As the Chairman, Board of Studies in Electronics Engineering of the University of Mumbai, I am happy to state here that, the Program Educational Objectives for Undergraduate Program were finalized in a brain storming session, which was attended by more than 40 members from different affiliated Institutes of the University. They are either Heads of Departments or their senior representatives from the Department of Electronics Engineering. The Program Educational Objectives finalized for the undergraduate program in Electronics Engineering are listed below;

- 1. To prepare the Learner with a sound foundation in the mathematical, scientific and engineering fundamentals
- 2. To motivate the Learner in the art of self-learning and to use modern tools for solving real life problems
- 3. To inculcate a professional and ethical attitude, good leadership qualities and commitment to social responsibilities in the Learner's thought process
- 4. To prepare the Learner for a successful career in Indian and Multinational Organisations

In addition to Program Educational Objectives, for each course of the program, objectives and expected outcomes from a learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I strongly believe that even a small step taken in the right direction will definitely help in providing quality education to the major stakeholders.

Dr.Sudhakar S. Mande

Chairman, Board of Studies in Electronics Engineering, University of Mumbai

Course Code	Course Name		eaching Sche Contact Hou		Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX801	Internet of Things	04			04			04	
ELX 802	Analog and Mixed VLSI Design	04			04			04	
ELXDLO804X	Department Level Optional course IV	04			04			04	
ILO802X	Institute Level Optional course II#	03			03			03	
ELXL801	Internet of Things Lab.		02			01		01	
ELXL802	Analog and Mixed VLSI Design Lab.		02			01		01	
ELXL803	Project-II		12			06		06	
ELXLDLO804 X	Department Level Optional Courses IV Lab.		02			01		01	
	TOTAL	15	18		15	9		24	

B.E. (Electronics Engineering) – Semester VII	es Engineering) – Semester V	/III
---	------------------------------	------

				Exami Theory		heme – Sen	nester VIII		
Course Code	Course Name	Interna Test I	ll Assessme Test II		End Sem Exam Marks	Exam Durati on (Hours)	Term Work	Oral /Prac	Total
ELX801	Internet of Things	20	20	20	80	03			100
ELX 802	Analog and Mixed VLSI Design	20	20	20	80	03			100
ELXDLO804X	Department Level Optional course IV	20	20	20	80	03			100
ILO802X	Institute Level Optional course II	20	20	20	80	03			100
ELXL801	Internet of Things Lab.						25	25	50
ELXL802	Analog and Mixed VLSI Design Lab.						25	25	50
ELXL803	Project-II						100	50	150
ELXLDLO804 X	Department Level Optional Courses IV Lab.						25	25	50
	Total	80	80	80	320	15	150	150	700

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

Course Code	Department Level Optional Course III	Course Code	Institute Level Optional Course I*
ELXDLO7031	Neural Network and Fuzzy Logic	ILO7011	Product Lifecycle Management
ELXDLO7032	Advance Networking Technologies	ILO7012	Reliability Engineering
ELXDLO7033	Robotics	ILO7013	Management Information System
ELXDLO7034	Integrated Circuit Technology	ILO7014	Design of Experiments
		ILO7015	Operation Research
		ILO7016	Cyber Security and Laws
		ILO7017	Disaster Management and Mitigation Measures
		ILO7018	Energy Audit and Management

Course Code	Department Level Elective Course IV	Course Code	Institute Level Elective Course II [#]
ELXDLO8041	Advanced Power Electronics	ILO8021	Project Management
ELXDLO8042	MEMS Technology	ILO8022	Finance Management
ELXDLO8043	Virtual Instrumentation	ILO8023	Entrepreneurship Development and Management
ELXDLO8044	Digital Image Processing	ILO8024	Human Resource Management
		ILO8025	Professional Ethics and CSR
		ILO8026	Research Methodology
		ILO8027	IPR and Patenting
		ILO8028	Digital Business Management
		ILO8029	Environmental Management

		3 Engineer	<u></u>						
`Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELX 801	Internet of Things	4	2		4			04	

B.E. (Electronics Engineering) – Semester VIII

Subject	Subject Name		Examinat				n Scheme					
Code			Theory Marks			Term	Practical	Oral	Total			
		Inte	Internal assessment			Work						
		Test 1	Test	Ave. Of	Exam							
			2	Test 1 and								
				Test 2								
ELX 801	Internet of	20	20	20	80	-			100			
	Things											

Course Pre-requisite: ELX 501 :- Micro-controllers and Applications

ELX 601:- Embedded System and RTOS ELX602:- Computer Communication Network ELXDLO-2 Wireless Communication

Course Objectives:

The objectives of this course are to:

- 1. Understand the design features of Internet of Things(IoT)
- 2. Understand importance of data handling in IoT Way.
- 3. Introduce multiple way of data communication and networking.
- 4. Understand design issue in IoT

Course Outcomes:

On successful completion of the course the students will be able to:

- 1. Understand the concepts of Internet of Things
- 2. Analyze basic web connectivity in IoT
- 3. Understand Data handling in IoT
- 4. Design basic applications based on IoT using specific components

Module	Unit	Topics	Hrs.
No.	No.		
1.		Introduction to IoT	08
	1.1	Introduction;-Defining IoT, Characteristics of IoT, Physical design of IoT, Logical	
		design of IoT, Functional blocks of IoT, Sources of IoT, and M2MCommunication.	
	1.2	Iot and M2m:- IoT/M2M System layers and Design Standardization, Difference	
		between IoT and M2M	
2.		Network & Communication aspects	10

	2.1	Design Principles & Web Connectivity:- Web Communication Protocols for connected devices, Web connectivity using Gateway, SOAP, REST, HTTP, RESTful and WebSockets	
		(Publish –Subscribe),MQTT, AMQP, CoAP Protocols	
	2.2	Internet Connectivity: - Internet connectivity, Internet based communication, IP addressing in IoT, Media Access Control, Application Layer Protocols. LPWAN Fundamentals :LORA ,NBIoT,CAT LTE M1,SIGFOX	
3.0	+	IoT Platforms and Design Methodology	08
	3.1	Defining Specifications About:- Purpose & requirements, process, domain model, information model, service, IoT level, Functional view, Operational view, Device and Component Integration, (case studies)	
	3.2	IoT Levels:-IoT Levels and Deployment Templates	
4.0		Data Handling in IoT	10
	4.1	Data Acquiring, Organizing, Processing:- Data acquiring and storage, Organizing the data, Transactions, Business Processes, Integration and Enterprise Systems, Analytics.	
	4.2	Data Collection and Storage:- Cloud Computing Paradigm for Data Collection, storage and computing, Cloud Service Models, Xively Cloud for IoT (AWS ,Google APP engine ,Dweet.IO, Firebase)	
5.0		Components of IoT	06
	5.1	Exemplary Devices:- Raspberry Pi, R-Pi Interfaces, Programming R-Pi, Sensor Technology, Sensor Data Communication Protocols, RFID, WSN Technology, Intel Galileo	
6.0	+	IoT Case Studies	06
	6.1	Design Layers, complexity, IoT Applications in Premises, Supply Chain and Customer Monitoring.	
	6.2	Home Automation, Smart Cities, Environment, Agriculture, IoT Printer	
		Total	48

Recommended Text Books:

- 5. ArshdeepBahga and Vijay Madisetti, "Internet of Things: A Hands-on Approach, Universities Press.
- 6. Raj Kamal, "Internet of Things: Architecture and Design Principles", McGraw Hill Education ,First edition
- 7. David Hanes ,Gonzalo salgueiro"IoT Fundamentals Networking Technologies,Protocols and Use Cases for Internet of Things", Cisco Press, Kindle 2017 Edition
- 8. Andrew Minteer ,"Analytics for the Internet of Things(IoT)",Kindle Edition

Reference Books:

- 1. Adrian McEwen, Hakim Cassimally, : Designing the Internet of Things", Paperback, First Edition
- 2. <u>Yashavant Kanetkar</u>, <u>Shrirang Korde</u>:Paperback "21 Internet of Things (IOT) Experiments"
 - a. BPB Publications

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of thesyllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total 4 questions need to be solved.

3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4: Remaining questions will be selected from all the modules.

Subject Code	Subjec Name		Т	neme		Credits Assigned							
			heory	Practical	Tutori	al	Theory	y T/W Practic		Tutor	ial	То	tal
ELX802	Analog and Mixed VLSI Desigr		04	02	_		04	-		-		0	4
		Theo	nination ry Mark nal Asse	End Ex		kam							
	Ma			essment	Sem Exam	D	uration	Term work	Pı	ractical	Ora	al T	「otal
		Test 1	2	Average	(Marks)	(Hrs)							
ELX802	Analog and Mixed VLSI Design	20	20	20	80		03	-		-	-		100

Course Pre-requisite:

- □ ELX302: Electronic Devices and Circuits I
- □ ELX303: Digital Circuit Design
- □ ELX402: Electronic Devices and Circuits II
- □ ELX504: Design With Linear Integrated Circuits
- □ ELX603: VLSI Design
- □ ELX DLO-3: IC Technology

Course Objectives:

- 1. To teach analysis and design of building blocks of CMOS Analog VLSI Circuits.
- 2. To highlight the issues associated with the CMOS analog VLSI circuit design.
- 3. To emphasize upon the issues related to mixed signal layout design.

Course Outcomes:

After successful completion of the course student will be able to

- 1. Discuss tradeoffs involved in analog VLSI Circuits.
- 2. Analyze building blocks of CMOS analog VLSI circuits.
- 3. Design building blocks of CMOS analog VLSI circuits
- 4. Carry out verifications of issues involved in analog and mixed signal circuits

Module No	Unit No	Topics	Hrs
		Analog building blocks	
1.0	1.1	Need for CMOS analog and mixed signal designs, MOS Transistor as sampling switch, active resistances, current source and sinks, current mirror.	8
		Voltage References: Band Gap References, General Considerations, Supply-independent biasing, Temperature independent references, PTAT	

		aurrent generation and Constant Crn bioging	
		current generation and Constant Gm biasing	
-		Amplifier Fundamentals	
		Single Stage Amplifiers: Basic concepts, Gain Bandwidth (GBW),	
	2.1	Common-source stage (with resistive load, diode connected load, current-	
		source load, triode load, source degeneration), source follower, common-	
-		gate stage, cascode stage, folded cascade stage.	-
2.0		Differential Amplifiers: Single ended and differential operation, Basic	
	2.2	differential pair, large signal and small signal behaviours, Common-mode	12
-		response, Differential pair with MOS loads.	-
		Noise: Statistical Characteristics of Noise, Types of Noise, Representation	
	2.3	of Noise in circuits, Noise in Single stage amplifiers (CS, CD, CG stages),	
		noise in differential pairs, noise bandwidth, noise figure, noise	
		temperature.	
-		MOS Operational Amplifiers	
		Stability and Frequency Compensation: General Considerations,	
	3.1	Multipole systems, Phase margin, Frequency compensation, compensation	-
2.0		of two stage op- amps	-
3.0		Op-amp Design: General Considerations, performance parameters, One-	
	2.2	stage op- amps, Two-stage op-amps, Gain Boosting, Common-mode	
	3.2	feedback, Input range limitations(ICMR), Slew Rate, Power supply	
		rejection, Noise in op-amps. Design of single ended and double ended two	
		stage Op-amps Mixed Signal Circuits	
-		Basic Concepts: AMS design flow, ASIC, Full custom design, Semi-	
	4.1	custom design, System on Chip, System in package, Hardware software	
	7.1	co-design, and mixed signal layout issues.	8
4.0		Oscillators: General considerations, Ring oscillators, LC oscillators,	
	4.2	VCO,	
-		Phase-Locked Loop: Simple PLL, Charge pump PLL, Non-ideal effects	
	4.3	in PLL, Delay locked loops and applications of PLL in integrated circuits	
		Data Converter Fundamentals	
ł		Switch Capacitor Circuits: MOSFETs as switches, Speed considerations,	
5.0	5.1	Precision Considerations, Charge injection cancellation, Unity gain buffer,	
		Non- inverting amplifier and integrator.	4
-	5.2	Basic CMOS comparator Design, Adaptive biasing, Analog multipliers.	
		Data Converter Fundamentals and Architectures	1
-		Fundamentals: Analog versus discrete time signals, converting analog	
	6.1	signals to data signals, sample and hold characteristics. DAC	
		specifications, ADC specifications.	
6.0		DAC architectures: Digital input code, resistors string, R-2R ladder	8
		networks, current steering, charge scaling DACs, Cyclic DAC, pipeline	
	6.2	DAC	
		ADC architectures: Flash, Two Step Flash, Pipeline ADC, Integrating	
			1
		ADCs, Successive approximation ADCs	

Recommended Books:

- 1. B Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 1st Edition.
- 2. R. Jacaob Baker, Harry W. Li, David E. Boyce, "CMOS Circuit Design, Layout, and Simulation", Wiley, Student Edition
- 3. P. E. Allen and D. R. Holberg, "*CMOS Analog Circuit Design*", Oxford University Press, 3rd Edition.
- 4. Gray, Meyer, Lewis, Hurst, "Analysis and design of Analog Integrated Circuits", Willey, 5th Edition

Internal Assessment (IA)

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total 4 questions need to be solved.

3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Т	eaching S	cheme			(Credits A	Assigne	d		
		Theory	Practic	al Tutoria	I Theor	ry 🗋	Practica	al Tut	orial		Tota	.I
ELX DLO8041	Advanced Power Electronics	04	02		04					04		
Subject Code	Subject Name	Theory	nation Sch Marks I assessme		End		am	Term Work	Pract	ical	Oral	Total
		Test 1	Test Av 2 an	g of Test 1 d Test 2	- Sem. Exam		ration ours					
ELX DLO8041	Advanced Power Electronics	20	20 20		80	03						100

Course Pre-requisite:

- 4. Power Electronics.
- 5. Linear Control System.
- **6.** BEE

Course Objectives:

- 3. To enhance the ideas of students for more complex power electronic system.
- 4. To teach the analytical methods in power electronic systems.
- 5. To expose the students to various applications of power electronics in electronics equipment, drives and non-conventional energy systems.

Course Outcomes:

After successful completion of the course students will be able to:

- 1. Thoroughly understand the modern methods of analysis and control of power electronic systems.
- 2. Carry out the theoretical analysis of the power electronic systems from the 'Systems Theory' point of view.
- 3. Appreciate the ubiquity of power electronic systems in engineering fields.
- 4. Simulate and analyse power electronic systems.

Module	Unit	Contents	Hrs.
No.	No.		
1		Three-phase Rectifiers	8
	1.1	3-phase half-wave and full-wave controlled rectifiers with R and RL load, Effect of source inductance,	
	1.2	Distortion in line current, calculation of performance parameters.	
2		Three-phase inverters and control	8
	2.1	Three phase bridge inverters (120° and 180° conduction mode) with R and RL load	
	2.2	PWM for 3-phase voltage source inverters, Space Vector Modulation (SVM) technique for 3-phase voltage source inverters, hysteresis control.	
3		DC-DC Converters	10
	3.1	Average model, linearized and transfer function models, state-space average models of basic buck, boost and buck-boost converters.	
	3.2	Feedback control of these converters (PI and PID).	
4		Power Electronic Applications in DC Drives	8
	4.1	Introduction to DC motors, speed control of DC motor, drives with semi converters, full converters and dual converters.	
	4.2	Chopper-based drive.	
	4.3	Electric braking of DC motors.	
5		Power Electronic Applications in AC Drives	10
	5.1	Introduction to three-phase induction motor, speed control methods for three-phase induction motor :	
		i) Stator voltage	
		ii) Variable frequency	
		iii) Rotor resistance	
		iv) V/f control	
		v) Slip power recovery schemes	
6		Power Electronic Applications	4
	6.1	Induction heating, dielectric heating, solid state relays,	

	6.2	Energy conversion interface in renewable energy system.	
		Total	48

Recommended Books:

- 1. M. Rashid, Power Electronics: Circuits, Devices, and Applications, PHI, 3rd Edition.
- 2. R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Springer, 2nd Edition.
- 3. Mohan, Undeland and Robbins, Power Electronics: Converters, Applications and Design, Wiley (Student Edition), 2nd Edition.
- 4. P. S. Bimbhra, Power Electronics, Khanna Publishers, 2012.
- 5. M. D. Singh, K. B. Khanchandani, Power Electronics, Tata McGraw Hill, 2nd Edition.
- 6. J. P. Agrawal, Power Electronics Systems: Theory and Design, Pearson Education, 2002.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Т	eaching S	Scheme			C	Credits A	Assigne	ed		
		Theory	Practic	cal Tutoria	I Theor	ſy	Practic	al Tu	torial		Tota	I
ELX DLO8042	MEMS Technology	04	02		04						04	
Subject	Subject Name		nation Scl y Marks	heme								
Code		Interna Test 1	al assessm Test A 2 ar	ient vg of Test 1 id Test 2	t 1 End Exam Sem. duratio Exam Hours		uration	Term Work Pra		ical	Oral	Total
ELX DLO8042	MEMS Technology	20	20 20)	80	03	3					100

Course Pre –requisite: VLSI Design an IC Technology

Course Objectives:

- 1. To provide knowledge of MEMS processing steps and processing modules
- 2. To provide knowledge of MEMS Materials with respect to applications.
- 3. To demonstrate the use of semiconductor based processing modules used in the fabrication of variety of sensors and actuators (e.g. pressure sensors, accelerometers, etc.) at the micro-scale.
- 4. To provide an understanding of basic design and operation of MEMS sensors, actuators and structures.

Course Outcomes:

- 1. Understand the underlying fundamental principles of MEMS devices including physical operation and material properties.
- 2. Design and simulate MEMS devices using standard simulation tools.
- 3. Develop different concepts of micro system sensors and actuators for real-world applications.
- 4. Understand the rudiments of Micro-fabrication techniques.

Module No.	Unit No.	Contents	Hrs.
1		Introduction to MEMS	4
	1.1	Introduction to MEMS, Comparison with Micro Electronics Technology,	
	1.2	Real world examples (Air-Bag, DMD, Pressure Sensors), MEMS Challenges, MEMS Sensors in Internet of Things (IoT), Bio-medical applications	
2		MEMS Materials and Their Properties	8
	2.1	Materials (eg. Si, SiO ₂ , SiN, SiC, Cr, Au, Al, Ti, SU8, PMMA, Pt)	
	2.2	Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure.	
3		MEMS Sensors, Actuators and Structures	8
	3.1	MEMS Sensing (Capacitive, Piezo electric Piezo resistive)	
	3.2	Micro Actuation Techniques (Thermal, Piezo electric, Electro static, Shape Memory Alloys, LORENTZ FORCE ACTUATION), Micro Grippers, Micro Gears, Micro Motors, Micro Valves, Micro Pumps.	
4		MEMS Fab Processes	10
	4.1	MEMS Processes & Process parameters: Bulk & Surface Micromachining, High Aspect Ratio Micro	
	4.2	Machining (LIGA, Laser), X-Ray Lithography, Photolithography, PVD techniques, Wet, Dry, Plasma	
	4.3	etching, DRIE, Etch Stop Techniques. Die, Wire & Wafer Bonding, Dicing, Packaging(with Metal	
5		MEMS Devices	12
	5.1	Architecture, working and basic behaviour of Cantilevers, Micro heaters, Accelerometers, Pressure Sensor types, Micromirrors in DMD, Inkjet printer- head. Steps involved in Fabricating above devices	
6		MEMS Device Characterization	6

	Total	48
6.2	MEMS Failure Mechanisms and Reliability.	
6.1	Piezo-resistance, TCR, Stiffness, Adhesion, Vibration, Resonant frequency, & importance of these measurements in studying device behavior	

Recommended Books:

- 1. MEMS and MICROSYSTEMS Design and Manufacture by Tai Ran Hsu : McGraw Hill Education
- 2. An Introduction to Micro-electromechanical Systems Engineering; 2nd Ed by N. Maluf, K Williams; Publisher: Artech House Inc
- 3. Micro machined Transducers Sourcebook by G. Kovacs; Publisher: McGraw-Hill
- 4. Practical MEMS by Ville Kaajakari; Publisher: Small Gear Publishing
- 5. Micro-system Design by S. Senturia; Publisher: Springer
- 6. Analysis and Design Principles of MEMS Devices MinhangBao; Publisher: Elsevier Science
- 7. Fundamentals of Micro-fabrication by M. Madou; Publisher: CRC Press; 2 edition
- 8. Micro machined Transducers Sourcebook by G. Kovacs; Publisher: McGraw-Hill

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total 4 questions need to be solved.

3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4. Remaining questions will be selected from all the modules.

Course	Course Name	Те	aching Sche	me	Credits Assigned					
Code		Theory	Practical	Tutoria l	Theory	TW/Practica l	Tutorial	Total		
ELXDLO 8043	Virtual Instrumentation	04			04			04		

		Examination Scheme									
Course	Course Name		Th	eory Marks							
Code		Interna	l Assessm	ent (IA)	End Semester	Term Work	Oral & Practical	Total			
		Test I	Test II	Average	Examination						
ELXDL O8043	Virtual Instrumentation	20	20	20	80	-	-	100			

<u>Rationale</u> :- Virtual instrumentation combines mainstream commercial technologies such as the PC, with flexible software and a wide variety of measurement hardware, so one can create user-defined systems that meet their exact application needs. Virtual instrumentation has led to a simpler way of looking at measurement systems. Instead of using several stand-alone instruments for multiple measurement types and performing rudimentary analysis by hand, engineers now can quickly and cost-effectively create a system equipped with analysis software and a single measurement device that has the capabilities of a multitude of instruments for various applications & measurements.

Course Objectives :-

- 1. To understand virtual instrumentation (VI) & to realize its architecture
- 2. To familiarize with VI software & learn programming in VI
- 3. To study various instruments interfacing & data acquisition methods
- 4. To understand various analysis tools & develop programs for different measurement applications

Course Outcomes :-

At the end of the course, students should gain the ability to :-

- **CO-1** :- Explain the concepts of virtual instrumentation
- **CO-2** :- Select the proper data acquisition hardware
- **CO-3 :-** Configure the data acquisition hardware using LabVIEW
- **CO-4 :-** Use LabVIEW to interface related hardware like transducers
- CO-5 :- Design virtual instruments for practical applications

Modul	Topics	Hour
e No.	Topics	S
1	INTRODUCTION TO VIRTUAL INSTRUMENTATION (VI)	
1.1	Historical perspective – Need for VI – Advantages of VI – Definition of VI – Block diagram & architecture of VI – Data flow techniques – Graphical programming in data flow – Comparison with conventional programming	06
2	PROGRAMMING TECHNIQUES	
2.1	VI & sub-VI – Loops & charts – Arrays – Clusters – Graphs – Case & sequence structures – Formula nodes – Local & global variables – String & files inputs	08
3	APPLICATION DEVELOPMENT SOFTWARE (LabVIEW)	
3.1	Creating virtual instrument in LabVIEW – Implementing dataflow programming in LabVIEW – VI, sub-VI & modular code creation in LabVIEW – Arrays & file I/O in LabVIEW – Textual math integration in LabVIEW – Interfacing external instruments to PC using LabVIEW	10
4	DATA ACQUISITION BASICS	
4.1	Digital I/O – Counters & timers – PC hardware structure – Timing – Interrupts – DMA – Software & hardware installation – IEEE GPIB 488 concepts – Embedded system buses – PCI – EISA – CPCI	08
5	COMMON INSTRUMENT INTERFACES	
5.1	Current loop – RS 232C / RS 485 – Interface basics – USB – PCMCIA – VXI – SCXI – PXI – Networking basics for office & industrial application VISA & IVI – Image acquisition & process – Motion control – Digital multimeter (DMM) – Waveform generator	08
6	USING ANALYSIS TOOLS & APPLICATION OF VI	
6.1	Fourier transform – Power spectrum – Correlation method – Windowing & filtering – Pressure control system – Flow control system – Level control system – Temperature control system – Motion control employing stepper motor – PID controller toolbox	08
1 – 6	TOTAL	48

<u>Recommended Books</u> :-

1. Dr. Sumathi S. & Surekha P, LabVIEW Based Advanced Instrumentation System, PHI, 2nd edition (2007)

Cary Johnson, LabVIEW Graphical Programming, McGraw Hill, 2nd edition (2006)
 Lisa K. Wells & Jeffrey Travis, LabVIEW for Everyone, PHI, 3rd edition (2009)

4. Robert H. Bishop, Learning with LabVIEW 7 Express, Pearson Education, 1st edition (2005)
5. Jovitha Jerome, Virtual Instrumentation using LabVIEW, PHI, 2nd edition (2010)

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

Course	Course Name	Teaching Scheme Credits Assigned						
Code		Theory	Practical	Tutoria l	Theory	TW/Practica l	Tutorial	Total
ELXDLO 8044	Digital Image Processing	04			04			04

		Examination Scheme									
Course Code	Course Name		Th	eory Marks							
	Course Maine	Interna	al Assessm	ent (IA)	End Semester	Term Work	Oral & Practical	Total			
		Test I	Test II	Average	Examination						
ELXDL O	Digital Image	20	20	20	80	-	-	100			
8044	Processing										

Course Pre-requisite:

- □ Applied Mathematics
- □ Signals and Systems

Course Objectives:

- 1. To learn the fundamental concepts of Digital Image Processing through basic spatial and frequency domain techniques.
- 2. To learn Image Compression and Decompression Techniques and compression standards.

Course Outcomes:

After successful completion of the course student will be able to

- 1. Understand the fundamentals of Digital Image representation and simple pixel relations.
- 2. Explain spatial domain and frequency domain techniques for digital image enhancement.
- 3. Perform segmentation and morphological operations.
- 4. Apply compression and decompression techniques to different digital images.

Module No.	Unit No.	Topics	Hrs.
		Digital Image Processing Fundamentals	
	1.1	Introduction: Background, Representation of a Digital Image, Fundamental Steps in Image Processing, Elements of a Digital Image Processing System	
1		Digital Image Fundamentals: Elements of Visual Perception, A Simple Image	04
	1.2	Model, Two dimensional Sampling and Quantization, Tonal and Spatial Resolutions, Some Basic Relationships between Pixels,	
		Image File Formats : BMP, TIFF and JPEG.	
		Color Models (RGB, HSI, YUV)	
		Image Enhancement in Spatial Domain	
,		Enhancement in the spatial domain: Some Simple Intensity Transformations,	08
-	2.1	Histogram Processing, Image Subtraction, Image Averaging,	08
		Spatial domain filters: Smoothing Filters, Sharpening Filters, High boost filter	
		Image Segmentation and Representation	
	3.1	Detection of Discontinuities, Edge Linking using Hough Transform, Thresholding,	
3	5.1	Region based Segmentation, Split and Merge Technique	08
	3.2	Image Representation and Description, Chain Code, Polygonal Representation,	
	5.2	Shape Number, Two Dimensional Moments.	_
		Binary Image Processing	
4	4.1	Binary Morphological Operators, Dilation and Erosion, Opening and Closing, Hit-or- Miss Transformation, Boundary Extraction,	06
	4.1	Region Filling, Thinning and Thickening, Medial Axis Transform, Connected Component Labeling	
		Image Transforms and frequency domain processing	
5	5.1	Introduction to 2 Dimensional Fourier Transform, Discrete Fourier Transform, Properties of the Two-Dimensional Fourier Transform, Fast Fourier Transform(FFT), Computation of 2 DFFT	12
	5.2	Discrete Hadamard Transform(DHT), Fast Hadamard Transform(FHT), Discrete	-

		Cosine Transform(DCT), Introduction to Discrete Wavelet Transform (DWT)	
	5.3	Enhancement in the frequency domain: Frequency Domain Filtering Lowpass Filtering, Highpass Filtering, Homomorphic Filtering, Generation of Spatial Masks from Frequency Domain Specifications	_
		Image Compression:	
	6.1	Fundamentals :Coding Redundancy, Interpixel Redundancy, Psycho visual Redundancy	-
6		Image Compression Models : The Source Encoder and Decoder, Lossless	10
	6.2	Compression Techniques : Run Length Coding, Arithmetic Coding, Huffman	-
		Coding, Differential PCM,	-
	6.3	Lossy Compression Techniques: Predictive Coding, Delta modulation, Improved Gray Scale Quantization, Transform Coding, JPEG, MPEG-1., Fidelity Criteria.	
Total	I	_ 1	48

Text Books:

- 1. Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, Third Edition, 2009,
- 2. Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition

Reference Books:

- 1. S. Jayaraman, E.Esakkirajan and T.Veerkumar, "Digital Image Processing" TataMcGraw Hill Education Private Ltd, 2009,
- Milan Sonka, Vaclay Hlavac, and Roger Boyle, "Image Processing, Analysis, and Machine Vision", Second Edition, Thomson Learning, 2001
 William K. Pratt, "Digital Image Processing", Third Edition, John Wiley & Sons, Inc., 2001 Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

e Code	Course Name	Credits
ILO8021	Project Management	03

Objectives:

- 1. To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
- 2. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

Outcomes: Learner will be able to...

- 1. Apply selection criteria and select an appropriate project from different options.
- 2. Write work break down structure for a project and develop a schedule based on it.
- 3. Identify opportunities and threats to the project and decide an approach to deal with them strategically.
- 4. Use Earned value technique and determine & predict status of the project.
- 5. Capture lessons learned during project phases and document them for future reference

Module	Detailed Contents	Hrs
01	Project Management Foundation: Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager. Negotiations and resolving conflicts. Project management in various organization structures. PM knowledge areas as per Project Management Institute (PMI).	5
02	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming & performing), team dynamics.	6
03	 Project Planning and Scheduling: Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, 	8

	GANTT chart. Introduction to Project Management Information System (PMIS).	
	Planning Projects:	
04	Crashing project time, Resource loading and leveling, Goldratt's critical chain, Project Stakeholders and Communication plan.	6
	Risk Management in projects: Risk management planning, Risk identification and risk register. Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks	
	5.1 Executing Projects:	
	Planning monitoring and controlling cycle. Information needs and reporting, engaging with all stakeholders of the projects.	
	Team management, communication and project meetings.	
05	5.2 Monitoring and Controlling Projects:	8
	Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep. Project audit.	
	5.3 Project Contracting	
	Project procurement management, contracting and outsourcing,	
	6.1 Project Leadership and Ethics:	
	Introduction to project leadership, ethics in projects.	
	Multicultural and virtual projects.	
06	6.2 Closing the Project:	6
	Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration, Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study.	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK[®] Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

Course Code	Course Name	Credits
ILO8022	Finance Management	03

Objectives:

- 1. Overview of Indian financial system, instruments and market
- 2. Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- 3. Knowledge about sources of finance, capital structure, dividend policy

Outcomes: Learner will be able to...

- 1. Understand Indian finance system and corporate finance
- 2. Take investment, finance as well as dividend decisions

Module	Detailed Contents	Hrs
	Overview of Indian Financial System: Characteristics, Components and Functions of Financial System.	
01	Financial Instruments: Meaning, Characteristics and Classification of Basic Financial Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of Deposit, and Treasury Bills.	06
	Financial Markets: Meaning, Characteristics and Classification of Financial Markets — Capital Market, Money Market and Foreign Currency Market	
	Financial Institutions: Meaning, Characteristics and Classification of Financial Institutions — Commercial Banks, Investment-Merchant Banks and Stock Exchanges	
	Concepts of Returns and Risks: Measurement of Historical Returns and Expected Returns of a Single Security and a Two-security Portfolio; Measurement of Historical Risk and Expected Risk of a Single Security and a Two-security Portfolio.	
02	Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Continuous Compounding and Continuous Discounting.	06
02	Overview of Corporate Finance: Objectives of Corporate Finance; Functions of Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision.	00
03	Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis;	09

	Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure	
	Ratios; Stock Market Ratios; Limitations of Ratio Analysis.	
	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital	
	Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return,	
	Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability	
04	Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)	10
04	Working Capital Management: Concepts of Meaning Working Capital; Importance of	10
	Working Capital Management; Factors Affecting an Entity's Working Capital Needs;	
	Estimation of Working Capital Requirements; Management of Inventories;	
	Management of Receivables; and Management of Cash and Marketable Securities.	
	Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine	
	Finance; Sources of Short Term Finance-Trade Credit, Bank Finance, Commercial	
	Paper; Project Finance.	
05	Capital Structure: Factors Affecting an Entity's Capital Structure; Overview of	05
	Capital Structure Theories and Approaches— Net Income Approach, Net Operating	
	Income Approach; Traditional Approach, and Modigliani-Miller Approach. Relation	
	between Capital Structure and Corporate Value; Concept of Optimal Capital Structure	
	Dividend Policy: Meaning and Importance of Dividend Policy; Factors Affecting an	
06	Entity's Dividend Decision; Overview of Dividend Policy Theories and Approaches-	03
	Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
 Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education,
- Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Cours	e Code	Course Name	Credits
ILO	8023	Enterpreneurship Development and Management	03

Objectives:

- 1. To acquaint with entrepreneurship and management of business
- 2. Understand Indian environment for entrepreneurship
- 3. Idea of EDP, MSME

Outcomes: Learner will be able to...

- 1. Understand the concept of business plan and ownerships
- 2. Interpret key regulations and legal aspects of entrepreneurship in India
- 3. Understand government policies for entrepreneurs

Module	Detailed Contents	Hrs
01	 Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship 	04
02	 Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to Business Operations 	09
03	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises	05
04	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc.,	08

	Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	
05	Effective Management of Business: Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing	08
06	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business	05

Assessment: Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Course Code	Course Name	Credits
ILO8024	Human Resource Management	03

Objectives:

- 1. To introduce the students with basic concepts, techniques and practices of the human resource management.
- 2. To provide opportunity of learning Human resource management (HRM) processes, related with the functions, and challenges in the emerging perspective of today's organizations.
- 3. To familiarize the students about the latest developments, trends & different aspects of HRM.
- 4. To acquaint the student with the importance of inter-personal & inter-group behavioral skills in an organizational setting required for future stable engineers, leaders and managers.

Outcomes: Learner will be able to...

- 1. Understand the concepts, aspects, techniques and practices of the human resource management.
- 2. Understand the Human resource management (HRM) processes, functions, changes and challenges in today's emerging organizational perspective.
- 3. Gain knowledge about the latest developments and trends in HRM.
- 4. Apply the knowledge of behavioral skills learnt and integrate it with in inter personal and integroup environment emerging as future stable engineers and managers.

 Introduction to HR Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencie HR Manager, HRM functions. Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues. 	es of 5
 Organizational Behavior (OB) Introduction to OB Origin, Nature and Scope of Organizational Behavior, Relevance to Organizational Effectiveness and Contemporary issues Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness Perception: Attitude and Value, Effect of perception on Individual Decisio 	7

	making, Attitude and Behavior.	
	• Motivation: Theories of Motivation and their Applications for Behavioral Change (Maslow, Herzberg, McGregor);	
	• Group Behavior and Group Dynamics: Work groups formal and informal groups and stages of group development. Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team.	
	Case study	
	Organizational Structure & Design	
03	• Structure, size, technology, Environment of organization; Organizational Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress.	6
	• Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership.	
	• Power and Politics: Sources and uses of power; Politics at workplace, Tactics and strategies.	
	Human resource Planning	
04	• Recruitment and Selection process, Job-enrichment, Empowerment - Job- Satisfaction, employee morale.	5
	Performance Appraisal Systems: Traditional & modern methods, Performance Counseling, Career Planning.	
	Training & Development: Identification of Training Needs, Training Methods	
	Emerging Trends in HR	
05	• Organizational development; Business Process Re-engineering (BPR), BPR as a tool for organizational development, managing processes & transformation in HR. Organizational Change, Culture, Environment	6
	• Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation.	
	HR & MIS	
06	Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries	10
	Strategic HRM	10
	Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic Management Process, Approaches to Strategic Decision Making; Strategic Intent – Corporate Mission, Vision, Objectives and Goals	

Labor Laws & Industrial Relations
Evolution of IR, IR issues in organizations, Overview of Labor Laws in Ind

Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Course Code	Course Name	Credits
ILO8025	Professional Ethics and Corporat Social Responsibility (CSR)	03

Objectives:

- 1. To understand professional ethics in business
- 2. To recognized corporate social responsibility

Outcomes: Learner will be able to...

- 1. Understand rights and duties of business
- 2. Distinguish different aspects of corporate social responsibility
- 3. Demonstrate professional ethics
- 4. Understand legal aspects of corporate social responsibility

Module	Detailed Contents	Hrs
	Professional Ethics and Business: The Nature of Business Ethics; Ethical Issues in	
01	Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and	04
	Benefits; Rights and Duties of Business	
	Professional Ethics in the Marketplace: Perfect Competition; Monopoly Competition;	
	Oligopolistic Competition; Oligopolies and Public Policy	
02		08
	Professional Ethics and the Environment: Dimensions of Pollution and Resource	
	Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable Resources	
	Professional Ethics of Consumer Protection: Markets and Consumer Protection;	
	Contract View of Business Firm's Duties to Consumers; Due Care Theory; Advertising	
03	Ethics; Consumer Privacy	06
	Professional Ethics of Job Discrimination: Nature of Job Discrimination; Extent of	
	Discrimination; Reservation of Jobs.	
04	Introduction to Corporate Social Responsibility: Potential Business Benefits—Triple	
	bottom line, Human resources, Risk management, Supplier relations; Criticisms and	
	concerns—Nature of business; Motives; Misdirection.	05
	Trajectory of Corporate Social Responsibility in India	
05	Corporate Social Responsibility: Articulation of Gandhian Trusteeship	08

	Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India,	
	Corporate Social Responsibility and Public-Private Partnership (PPP) in India	
	Corporate Social Responsibility in Globalizing India: Corporate Social	
06	Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs,	08
	Government of India, Legal Aspects of Corporate Social Responsibility-Companies	
	Act, 2013.	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by BidyutChakrabarty, Routledge, New Delhi.

Course Code	Course Name	Credits
ILO8026	Research Methodology	03

- 1. To understand Research and Research Process
- 2. To acquaint students with identifying problems for research and develop research strategies
- 3. To familiarize students with the techniques of data collection, analysis of data and interpretation

Outcomes: Learner will be able to...

- 1. Prepare a preliminary research design for projects in their subject matter areas
- 2. Accurately collect, analyze and report data
- 3. Present complex data or situations clearly
- 4. Review and analyze research findings

Module	Detailed Contents				
01	 Introduction and Basic Research Concepts 1.1 Research – Definition; Concept of Construct, Postulate, Proposition, Thesis, Hypothesis, Law, Principle.Research methods vs Methodology 1.2 Need of Research in Business and Social Sciences 1.3 Objectives of Research 1.4 Issues and Problems in Research 1.5 Characteristics of Research:Systematic, Valid, Verifiable, Empirical and Critical 	09			
02	 Types of Research 2.1. Basic Research 2.2. Applied Research 2.3. Descriptive Research 2.4. Analytical Research 2.5. Empirical Research 2.6 Qualitative and Quantitative Approaches 	07			

	Research Design and Sample Design			
03	3.1 Research Design – Meaning, Types and Significance			
	3.2 Sample Design – Meaning and Significance Essentials of a good sampling Stages in Sample Design Sampling methods/techniques Sampling Errors			
	Research Methodology			
	4.1 Meaning of Research Methodology			
	4.2. Stages in Scientific Research Process:			
	a. Identification and Selection of Research Problem			
	b. Formulation of Research Problem			
	c. Review of Literature			
04	d. Formulation of Hypothesis			
	e. Formulation of research Design			
	f. Sample Design			
	g. Data Collection			
	h. Data Analysis			
	i. Hypothesis testing and Interpretation of Data			
	j. Preparation of Research Report			
	Formulating Research Problem			
05	5.1 Considerations: Relevance, Interest, Data Availability, Choice of data, Analysis of data, Generalization and Interpretation of analysis	04		
	Outcome of Research			
0.0	6.1 Preparation of the report on conclusion reached			
06	6.2 Validity Testing & Ethical Issues			
	6.3 Suggestions and Recommendation			

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Course Code	Course Name	Credits
ILO8027	IPR and Patenting	03

- 1. To understand intellectual property rights protection system
- 2. To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures
- 3. To get acquaintance with Patent search and patent filing procedure and applications

Outcomes: Learner will be able to...

- 1. understand Intellectual Property assets
- 2. assist individuals and organizations in capacity building
- 3. work for development, promotion, protection, compliance, and enforcement of Intellectual Property and Patenting

Module	Detailed Contents	Hr			
01	 Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different category of IPR instruments - Patents, Trademarks, Copyrights, Industrial Designs, Plant variety protection, Geographical indications, Transfer of technology etc. Importance of IPR in Modern Global Economic Environment: Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of development 	05			
02	 Enforcement of Intellectual Property Rights: Introduction, Magnitude of problem, Factors that create and sustain counterfeiting/piracy, International agreements, International organizations (e.g. WIPO, WTO) active IPR enforcement Indian Scenario of IPR:Introduction, History of IPR in India, Overview of IP laws in India, Indian IPR, Administrative Machinery, Major international treaties signed by India, Procedure for submitting patent and Enforcement of IPR at national level etc. 	07			
03	Emerging Issues in IPR: Challenges for IP in digital economy, e-commerce, human genome, biodiversity and traditional knowledge etc.	05			
04	Basics of Patents: Definition of Patents, Conditions of patentability, Patentable and non-patentable inventions, Types of patent applications (e.g. Patent of addition etc), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method	07			

	of getting a patent	
05	Patent Rules: Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS agreement, Paris convention etc.)	08
06	 Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publicationetc, Time frame and cost, Patent Licensing, Patent Infringement Patent databases: Important websites, Searching international databases 	07

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignments on complete syllabus or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCE BOOKS:

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- Lous Harns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. Prabhuddha Ganguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books

- 9. M Ashok Kumar and mohd Iqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, Priti Mathur, Anshul Rathi, IPR: Drafting, Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

Course Code	Course Name	Credits
ILO8028	Digital Business Management	03

- 1. To familiarize with digital business concept
- 2. To acquaint with E-commerce
- 3. To give insights into E-business and its strategies

Outcomes: The learner will be able to

- Identify drivers of digital business
 Illustrate various approaches and techniques for E-business and management
- 3. Prepare E-business plan

Module	Detailed content				
1	 Introduction to Digital Business- Introduction, Background and current status, E-market places, structures, mechanisms, economics and impacts Difference between physical economy and digital economy, Drivers of digital business- Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things(digitally intelligent machines/services) Opportunities and Challenges in Digital Business, 	09			
2	 Overview of E-Commerce E-Commerce- Meaning, Retailing in e-commerce-products and services, consumer behavior, market research and advertisement B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals Other E-C models and applications, innovative EC System-From E-government and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC 	06			

3	Digital Business Support services:ERP as e –business backbone, knowledgeTope Apps, Information and referral systemApplication Development:Building Digital business Applications andInfrastructure	06	
4	Managing E-Business-Managing Knowledge, Management skills for e-business, Managing Risks in e –businessSecurity Threats to e-business -Security Overview, Electronic Commerce Threats, Encryption, Cryptography, Public Key and Private Key Cryptography, Digital Signatures, Digital Certificates, Security Protocols over Public Networks: HTTP, SSL, Firewall as Security Control, Public Key Infrastructure (PKI) for Security, Prominent Cryptographic Applications	06	
5	E-Business Strategy-E-business Strategic formulation- Analysis of Company's Internal and external environment, Selection of strategy, E-business strategy into Action, challenges and E-Transition (Process of Digital Transformation)		
6	Materializing e-business: From Idea to Realization-Business plan preparationCase Studies and presentations	08	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

References:

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, VinocenzoMorabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI:<u>10.1787/9789264221796-en</u>OECD Publishing

Course Code	Course Name	Credits
ILO8029	Environmental Management	03

- 1. Understand and identify environmental issues relevant to India and global concerns
- 2. Learn concepts of ecology
- 3. Familiarise environment related legislations

Outcomes: Learner will be able to...

- 1. Understand the concept of environmental management
- 2. Understand ecosystem and interdependence, food chain etc.
- 3. Understand and interpret environment related legislations

Module	Detailed Contents				
01	Introduction and Definition of Environment: Significance of Environment Management for contemporary managers, Career opportunities. Environmental issues relevant to India, Sustainable Development, The Energy scenario.	10			
02	Global Environmental concerns : Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man- made disasters, Atomic/Biomedical hazards, etc.	06			
03	Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.	05			
04	Scope of Environment Management, Role & functions of Government as a planning and regulating agency.Environment Quality Management and Corporate Environmental Responsibility	10			
05	Total Quality Environmental Management, ISO-14000, EMS certification.	05			
06	General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	03			

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press
- 7. Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Ass	signed		
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELXL 801	Internet of	-	2		-	01		01
	Things							
	Laboratory							

Subject	Subject Name				Examination	n Scheme					
Code		Theory Marks					Practical	Oral	Total		
		Internal assessment			End Sem.	Work					
		Test 1	Fest 1TestAve. Of		Exam						
			2	Test 1 and							
				Test 2							
ELXL 801	Internet of Things Laboratory	-	-	-	-	25		25	50		

Course Objectives:

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested Experiments:

(Programming using C, Embedded C, Pyhton is to be encouraged)

- 1. Minimum two Experiments using any hardware platform (Arduino/Raspberry Pi/BeagleBone/Galileo) for data handling and storage.
- 2. Minimum three experiments using any hardware platform (Arduino/Raspberry Pi/BeagleBone/Galileo) for interfacing various sensors and communicating data using Internet using various Protocols.
- 3. Minimum two experiments using any hardware platform (Arduino/Raspberry Pi/BeagleBone/Galileo) and wireless communication protocol (802.11 and 802.14.5 IEEE standard)
- 4. Minimum one experiment using Cloud Storage.

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering design issues, hardware and software details and applications.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXL 802	Analog and Mixed VLSI Design	-	2		-	01		01	

Subject	Subject Name				Examination	n Scheme					
Code			T	heory Marks		Term	Practical	Oral	Total		
		Internal assessment End Sem.				Work					
		Test 1	Test 1 Test Ave. Of		Exam						
			2	Test 1 and							
				Test 2							
ELXL 802	Analog and Mixed VLSI Design	-	-	-	-	25		25	50		

Course Objectives:

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested Experiments:

Use of Online Tools to study analog VLSI circuits

- 2. Analysis of MOSFETs for analog performance
- 3. Design and simulate various types of current mirror circuits
- 4. Design and simulate various common source amplifier circuits
- 5. Design and simulate various types of single stage amplifiers
- 6. Design and simulate differential amplifier
- 7. Design and simulate operational tran-sconductance amplifier
- 8. Design and simulate switch capacitor circuits
- 9. Design and simulate various types of oscillators
- 10. Design and simulate mixed mode circuit
- 11. Generate layout for the simple and cascode current mirror
- 12. Generate layout for common source amplifier
- 13. Generate layout for the differential amplifier

14. Generate layout for the Oscillator

15. Generate layout for Phase Detector

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit proper report covering the latest advances in the field of Mixed VLSI Design.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXDLO	Advanced	-	2		-	01		01		
8041	Power									
	Electronics									
	Lab.									

Subject	Subject Name				Examinatio	1 Scheme					
Code			T	heory Marks		Term	Practical	Oral	Total		
		Inte	Internal assessment End Sem.			Work					
		Test 1	Test 1 Test Ave. Of		Exam						
			2	Test 1 and							
				Test 2							
ELXDLO	Advanced	-	-	-	-	25		25	50		
8041	Power										
	Electronics										
	Lab.										

Course Objectives:

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested Experiments:

- 1. Single Phase Full Controlled Bridge Rectifier.
- 2. Speed control of Separately excited DC motor using Armature Voltage Control
- 3. Speed control of 3-phase Induction Motor using V/F control.
- 4. Simulation of 3-phase fully controlled Bridge rectifier with R and RL load.
- 5. Simulation of 1-phase fully controlled Bridge rectifier and study of various parameters.
- 6. Simulation of 1-phase Inverter and study of various Performance parameters.
- 7. Simulation of SVM Inverter.
- 8. Simulation of Closed loop dc-dc converter
- 9. Study High Frequency Induction heating & Dielectric heating.

10. Study of operation and control of solid state relays.

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering design issues, hardware and software details and applications.

Subje Cod		Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
			Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXD	LO	MEMS	-	2		-	01		01	
8042	2	Technology								
		Lab.								

Subject	Subject Name				Examinatio	n Scheme					
Code		Theory Marks					Practical	Oral	Total		
		Internal assessment End Sem.				Work					
		Test 1	Test 1 Test Ave. Of		Exam						
			2	Test 1 and							
				Test 2							
ELXDLO	MEMS	-	-	-	-	25		25	50		
8042	Technology										
	Lab.										

Course Objectives:

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested Experiments:

- 1. Design electro-statically actuated cantilever
- 2. Design bimorph cantilever which act as pressure sensor.
- 3. Dynamic analysis of Beam
- 4. Find the tip deflection of the cantilever with different types of load
- 5. Find the tip deflection of the cantilever in sweep analysis
- 6. Model and simulate Electro-mechanical actuator. Do dc and transient analysis

7. Design the geometry of MEMS and find performance characteristics such as resonant frequency, deflection per voltage or temperature

- 8. Simulate the harvested electrical power from mechanical vibrations using piezoelectric cantilever beam
- 9. Model and simulate of accelerometer
- 10. Case study of MEMS based device

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering fabrication issues, materials, characterization and applications of the MEMS devices.

Course		Те	eaching Sc	heme		Credits Assigned					
Code	Course Name	Theory	Theory Practical		Theory	FW/Practica l	Tutorial	Total			
ELXDL O8043	Virtual Instrumentation Laboratory		02		04			04			
Course	Course Name	1	Th	eory Marks	cheme						
Code		Interna	ll Assessm	ent (IA)	End Semester	r Term Work	Oral & Practical	Total			
		Test I	Test II	Average	Exam						
ELXDL O8043	Virtual Instrumentatio n Laboratory					25	25	50			
	Laboratory										

Term Work :-

At least 6 experiments covering entire syllabus of ELXDLO8043 (Virtual Instrumentation) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. One presentation on a case study based on the topic in Virtual Instrumentation need to be submitted. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced

Suggested List of Experiments :-

- 1. Verification of arithmetic operations
- 2. Verification of Boolean Expressions / half-adder & full-adder
- 3. Implementation of array functions
- 4. Program to convert Celsius into Fahrenheit & vice-versa
- 5. Program for implementing seven segment display
- 6. Program for calculating body mass index (BMI) using cluster

- 7. Program to control temperature using thermistor / RTD & DAQ
- 8. Program to control liquid flow using DAQ
- 9. Program to control liquid level using DAQ
- 10. Program to control pressure using DAQ
- 11. Program for DC motor speed control using PID toolbox

Course		Te	eaching Sc	heme	Credits Assigned							
Code	Course Name	Theory	Practica	al Tutoria l	¹ Theory	TW/Practica l	Tutorial	Total				
ELXDL O8044	Digital Image Processing		02		04			04				
			Examination Scheme									
Course	Course Name		Th	eory Marks	_							
Code		Interna	l Assessm	ent (IA)	End Semester Term Work		Oral & Practical	Total				
		Test I	Test II	Average	Exam							
ELXDL O8044	Digital Image Processing					25	25	50				

Term Work :-

At least 7 experiments covering entire syllabus of ELXDLO8044 (Digital Image Processing) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. One presentation on a case study based on the topic in Digital Image Processing need to be submitted. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXL704	Project I	-	06		-	03		09		
ELXL803	Project II		12			06				
	5									

- 1. To acquaint with the process of undertaking literature survey/industrial visit and identifying the problem
- 2. To familiarize the process of problem solving in a group
- 3. To acquaint with the process of applying basic engineering fundamental in the domain of practical applications
- 4. To inculcate the process of research Outcomes

Outcome:

Learner will be able to:

- 1. Do literature survey/industrial visit and identify the problem
- 2. Apply basic engineering fundamental in the domain of practical applications
- 3. Cultivate the habit of working in a team
- 4. Attempt a problem solution in a right approach
- 5. Correlate the theoretical and experimental/simulations results and draw the proper inferences
- 6. Prepare report as per the standard guidelines.

Students should do literature survey/visit industry/analyse current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor Students should use multiple literatures and understand the problem. Students should attempt solution to the problem by experimental/simulation methods. The solution is to be validated with proper justification and the report needs to be compiled in standard format.

Guidelines for Assessment of Project I

Project I should be assessed based on following points

- a) Quality of problem selected
- b) Clarity of Problem definition and Feasibility of problem solution
- c) Relevance to the specialization
- d) Clarity of objective and scope
- e) Breadth and depth of literature survey

Project I should be assessed through a presentation by the student project group to a panel of Internal examiners appointed by the Head of the Department/Institute of respective Programme.

Guidelines for Assessment of Project II

Project II should be assessed based on following points

- a) Quality of problem selected
- b) Clarity of Problem definition and Feasibility of problem solution
- c) Relevance to the specialization / Industrial trends
- d) Clarity of objective and scope
- e) Quality of work attempted
- f) Validation of results
- g) Quality of Written and Oral Presentation

Project Report has to be prepared strictly as per University of Mumbai report writing guidelines. Project II should be assessed through a presentation by the student project group to a panel of Internal and External Examiner approved by the University of Mumbai Students should be motivated to publish a paper in Conferences/students competitions based on the work