AC:

Item No:

UNIVERSITY OF MUMBAI

Bachelor of Engineering

in

Computer Science and Engineering (Internet of Thing and Cyber Security including Blockchain)

Second Vear with Effect from AY 2021-22

Third Year with Effect from AY 2022-23

Final Year with Effect from AY 2023-24

(REV- 2019 'C' Scheme) from Academic Year 2020 – 21

Under

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2019–2020)

AC:

Item No:

UNIVERSITY OF MUMBAI

Sr. No.	Heading	Particulars		
1	Title of the Course	Third Year Engineering Computer Science and Engineering (Internet of Thing and Cyber Security including Blockchain)		
2	Eligibility for Admission	After Passing Second Year Engineering as per the Ordinance 0.6243		
3	Passing Marks	40%		
4	Ordinances / Regulations (if any)	Ordinance 0.6243		
5	No, of Years / Semesters	8 semesters		
6	Level	P.G. / U.G./ Diploma / Certificate (Strike out which is not applicable)		
7	Pattern	Yearly / Semester (Strike out which is not applicable)		
8	Status	New / Revised (Strike out which is not applicable)		
9	To be implemented from Academic Year	With effect from Academic Year: 2022-2023		

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering) of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 13 weeks and remaining 2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self learning. Therefore in the present curriculum skill based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Second Year of Engineering from the academic year 2021-22. Subsequently this will be carried forward for Third Year and Final Year Engineering in the academic years 2022-23, 2023-24, respectively.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Incorporation and Implementation of Online Contents from NPTEL/ Swayam Platform

The curriculum revision is mainly focused on knowledge component, skill based activities and project based activities. Self-learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of 'C' scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are reduced to 171, to provide opportunity of self-learning to learner. Learners are now getting sufficient time for self-learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Preface by Board of Studies Team

It is our honor and a privilege to present the Rev-2019 'C' scheme syllabus of the Bachelor of Computer Science and Engineering in the (Internet of Thing and Cyber Security including Blockchain) (effective from the year 2021-22). AICTE has introduced Computer Science and Engineering in the (Internet of Thing and Cyber Security including Blockchain) as one of the nine emerging technology and hence many colleges affiliated with the University of Mumbai has started four years UG program for Computer Science and Engineering in the (Internet of Thing and Cyber Security including Blockchain). As part of the policy decision from the University end, the Board of IT got an opportunity to work on designing the syllabus for this new branch. As the Computer Science and Engineering in the (Internet of Thing and Cyber Security including Blockchain) is comparatively a young branch among other emerging engineering disciplines in the University of Mumbai, and hence while designing the syllabus promotion of an interdisciplinary approach has been considered.

The branch also provides multi-faceted scope like better placement and promotion of entrepreneurship culture among students and increased Industry Institute Interactions. Industries' views are considered as stakeholders while the design of the syllabus. As per Industry views only 16 % of graduates are directly employable. One of the reasons is a syllabus that is not in line with the latest emerging technologies. Our team of faculties has tried to include all the latest emerging technologies in the Computer Science and Engineering in the (Internet of Thing and Cyber Security including Blockchain) syllabus. Also the first time we are giving skill-based labs and Mini-project to students from the third semester onwards, which will help students to work on the latest Computer Science and Engineering in the (Internet of Thing and Cyber Security including Blockchain) technologies. Also the first time we are giving the choice of elective from fifth semester such that students will be mastered in one of the Internet of Thing domain. The syllabus is peer-reviewed by experts from reputed industries and as per their suggestions, it covers future emerging trends in Computer Science and Engineering in the (Internet of Thing and Cyber Security including Blockchain) technology and research opportunities available due to these trends.

We would like to thank senior faculties of IT, Computer and Electronics Department, of all colleges affiliated to University of Mumbai for significant contribution in framing the syllabus. Also on behalf of all faculties we thank all the industry experts for their valuable feedback and suggestions. We sincerely hope that the revised syllabus will help all graduate engineers to face the future challenges in the field of Emerging Areas of Computer Science and Engineering in the (Internet of Thing and Cyber Security including Blockchain).

Program Specific Outcome for graduate Program in Computer Science and Engineering (Internet of Thing and Cyber Security including Blockchain)

- 1. Apply Core of IoT, Cyber Security & Blockchain knowledge to develop stable and secure Application.
- 2. Identify the issues of IoT, Cyber Security including Blockchain in real time application and in all three area of domain.
- 3. Ability to apply and develop IoT & Cyber Security including Blockchain multidisciplinary projects.

Board of Studies in Information Technology - Team

Dr. Deven Shah (Chairman)

Dr. Lata Ragha (Member)

Dr. Vaishali D. Khairnar (Member)

Dr. Sharvari Govilkar (Member)

Dr. Sunil B. Wankhade (Member)

Dr. Anil Kale (Member)

Dr. Vaibhav Narwade (Member)

Dr. GV Choudhary (Member)

Ad-hoc Board Information Technology

University of Mumbai

Curriculum Equivalence

TE-Internet of Thing, TE-Cyber Security and TE-Computer Science and Engineering (Internet of Thing and Cyber Security including Blockchain) Sem-V all subjects are equivalent to TE-Computer Engineering Sem-V subjects.

Sr.	Sem	Name of Subject	Equivalence Subject	Equivalence	Branch
No.		rame of Subject	Equivalence publicit	Subject Code	Didnen
1	VI	Cryptography and Network Security	Cryptography and Network Security	CSC601 IoTCSBCC601	TE-Cyber Security, TE-Computer Science and Engineering(nternet of Thing and Cyber Security
2	371	Anni antina Canadia	Annihadian Carrita	Ceccos	including Blockchain)
2	VI	Application Security and Secure Coding	Application Security and Secure Coding	CSC602	TE-Cyber Security, TE-Computer Science and
		Principles	Principles	IoTCSBCDLO6012	Engineering(nternet of Thing and Cyber Security including Blockchain)
3	VI	Ethical Hacking & Digital Forensic	Ethical Hacking & Digital Forensic	CSC603 IoTCSBCDLO6013	TE-Cyber Security, TE-Computer Science and Engineering(nternet of
					Thing and Cyber Security including Blockchain)
4	VI	Web X.0	Web X.0	IoTC604	TE-Internet of Thing, TE-Cyber Security,
			V	CSC604	TE- Computer Science and Engineering(nternet
				IoTCSBCC604	of Thing and Cyber Security including Blockchain)
5	VI	CNS Lab	CNS Lab	CSL601	TE-Cyber Security, TE- Computer Science and Engineering(nternet of
				IoTCSBCL601	Thing and Cyber Security including Blockchain)
6	VI	IoT Architecture and Protocols	IoT Architecture and Protocols	IoTC601	TE-Internet of Thing, TE-Computer Science and
				IoTCSBCC602	Engineering(nternet of Thing and Cyber Security including Blockchain)
7	VI	IoT Architecture and Protocols Lab	IoT Architecture and Protocols Lab	IoTL601	TE-Internet of Thing, TE-Computer Science and
				IoTCSBCL602	Engineering(nternet of Thing and Cyber Security including Blockchain)
8	VI	Web Lab	Web Lab	IoTL604	TE-Internet of Thing, TE-Cyber Security,
				CSL604	TE- Computer Science and Engineering(nternet
				IoTCSBCL604	of Thing and Cyber Security including Blockchain)

9	VI	Enterprise Network	Enterprise Network	IoTDLO6011	TE-Internet of Thing, TE-
		Design	Design		Cyber Security,
				CSDLO6011	TE- Computer Science
					and Engineering(nternet
					of Thing and Cyber
				IoTCSBCDLO6011	Security including
					Blockchain)
10	VI	Blockchain Technology	Blockchain	IoTDLO6012	TE-Internet of Thing,
			Technology		TE-Cyber Security, TE-
				CSDLO6012	Computer Science and
					Engineering(nternet of
				IoTCSBCC603	Thing and Cyber Security
					including Blockchain)
11	VI	Virtualization and	Virtualization and	CSDLO6013	TE-Cyber Security, TE-
		cloud security	cloud security		Computer Science and
					Engineering(nternet of
				IoTCSBCDLO6014	Thing and Cyber Security
					including Blockchain)

Board of Studies in Information Technology - Team

Dr. Deven Shah (Chairman)

Dr. Lata Ragha (Member)

Dr. Vaishali D. Khairnar (Member)

Dr. Sharvari Govilkar (Member)

Dr. Sunil B. Wankhade (Member)

Dr. Anil Kale (Member)

Dr. Vaibhav Narwade (Member)

Dr. GV Choudhary (Member)

Ad-hoc Board Information Technology University of Mumbai

Program Structure for Third Year Computer Science and Engineering (Internet of Thing and Cyber Security including Blockchain)

UNIVERSITY OF MUMBAI (With Effect from 2022-2023)

		Seme	ester V	/I					
Course	Course Name		ching Sontact H			Cı	redits Ass	signed	
Code	Course (value	Theory]	Pract. Tut.		Theory	Pract		Total
IoTCSBCC601	Cryptography and Network Security	3				3			3
IoTCSBCC602	IoT Architecture and Protocols	3				3	>		3
IoTCSBCC603	Blockchain Technology	3				3			3
IoTCSBCC604	Web X.0	3			1	3			3
IoTCSBCDL O601x	Department Level Optional Course -2	3				3			3
IoTCSBCL601	CNS Lab			2			1		1
IoTCSBCL602	IoT Architecture and Protocols Lab			2			1		1
IoTCSBCL603	Blockchain Technologies Lab			2			1		1
IoTCSBCL604	Web Lab	1-1		2			1		1
IoTCSBCL605	Mobile Application Security and Penetration Testing Lab (SBL)	-		4)	2		2
IoTCSBCM60	Mini Project Lab: 2B Blockchain Security Model.		V	4\$			2		2
	Total	15		16		15	08		23
					Exami	nation Sch	eme		
				Theory			Term Work	Pract &ora	Lotal
Course Code	Course Name	Interna	al Assess	sment	End Sem Exa m	Exam. Duration (in Hrs)			
		Test 1	Test 2	Avg					
IoTCSBCC601	Cryptography and Network Security	20	20	20	80	3			100
IoTCSBCC602	IoT Architecture and Protocols	20	20	20	80	3			100
IoTCSBCC603	Blockchain Technology	20	20	20	80	3			100
IoTCSBCC604	Web X.0	20	20	20	80	3			100
IoTCSBCDL O601x	Department Level Optional Course -2	20	20	20	80	3			100

--

25

25

25

--

25

50

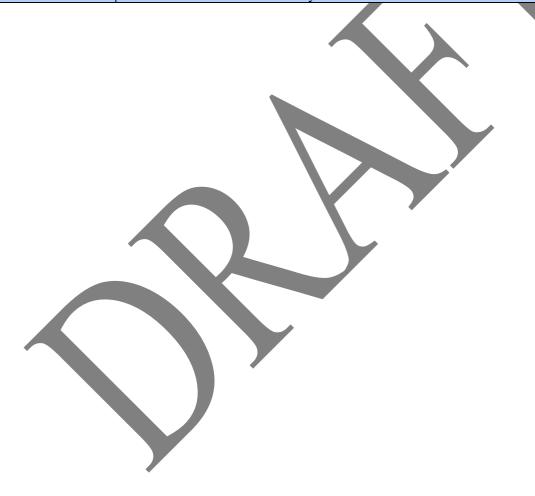
25

25

IoTCSBCL601 CNS Lab

IoTCSBCL602 IoT Architecture and

Lab


Protocols Lab

IoTCSBCL603 Blockchain Technologies

IoTCSBCL604	Web Lab				25	25	50
IoTCSBCL605	Mobile Application Security and Penetration Testing Lab (SBL)	-	 		 50	25	75
IoTCSBCM60	Mini Project Lab: 2B Blockchain Security Model.		 		 25	25	50
Total			 100	400	 175	100	775

\$ indicates work load of Learner (Not Faculty), for Mini-Project. Students can form groups with minimum 2(Two) and not more than 4(Four). Faculty Load: 1hour per week per four groups.

IoTCSBCDLO601X	Department Optional Course – 2
IoTCSBCDLO6011	Enterprise Network Design
IoTCSBCDLO6012	Application Security and Secure Coding Principles
IoTCSBCDLO6013	Ethical Hacking and Digital Forensic
IoTCSBCDLO6014	Virtualization and cloud security

Course Code	Course Name	Teaching S (Contact H		Credits Assigned		
Course Cour	Course Ivaine	Theory	Practical	Theory	Practical	Total
IoTCSBCC601	Cryptography & Network Security	3		3		3

		Examination Scheme				
		Theory				
Course Code	Course Name	Internal Assessment End Sem Exam Durati on (in Hrs) Pract / Oral	Total			
		Test1 Test 2 Avg.				
IoTCSBCC601	Cryptography & Network Security	20 20 80 3	100			

Course Objectives:

Sr. No.	Course Objectives					
The course	e aims:					
1	The basic concepts of computer and Network Security					
2	Various cryptographic algorithms including secret key management and different authentication techniques.					
3	Different types of malicious Software and its effect on the security					
4	Various secure communication standards including IPsec, SSL/TLS and email					
5	The Network management Security and Network Access Control techniques in Computer Security					
6	Different attacks on networks and infer the use of firewalls and security protocols.					

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On success	sful completion, of course, learner/student will be able to:	
1	Explain the fundamentals concepts of computer security and network security	L1,L2
2	Identify the basic cryptographic techniques using classical and block encryption	L1

	methods	
3	Study and describe the system security malicious softwares	L1,L2
4	Describe the Network layer security, Transport layer security and application layer security	L1,L2
5	Explain the need of network management security and illustrate the need for NAC	L1,L2
6	Identify the function of an IDS and firewall for the system security	L1

Prerequisite: Basic concepts of Computer Networks & Network Design, Operating System

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Basic concepts of Computer Networks & Network Design, Operating System	02	-
I	Introduction to Network Security & cryptography	Computer security and Network Security(Definition), CIA, Services, Mechanisms and attacks,The OSI security architecture, Network security model Classical Encryption techniques (mono-alphabetic and poly-alphabetic substitution techniques: Vigenere cipher, playfair cipher, transposition techniques: keyed and keyless transposition ciphers). Introduction to steganography. Self-Learning Topic: Study some more classical encryption techniques and solve more problems on all techniques. Homomorphic encryption in cloud computing	07	CO1
II	*Cryptography: Key management, distribution and user authentication	Block cipher modes of operation, Data Encryption Standard, Advanced Encryption Standard (AES). RC5 algorithm. Public key cryptography: RSA algorithm. Hashing Techniques: SHA256, SHA-512, HMAC and CMAC, Digital Signature Schemes – RSA, DSS. Remote user Authentication Protocols, Kerberos, Digital Certificate: X.509, PKI Self-Learning Topic: Study working of elliptical curve digital signature and its benefits over RSA digital signature.	09	CO2
Ш	Malicious Software	SPAM, Trojan horse, Viruses, Worms, System Corruption, Attack Agents, Information Theft, Trapdoor, Keyloggers, Phishing, Backdoors, Rootkits, Denial of Service Attacks, Zombie Self-Learning Topic: Study the recent malicious softwares and their effects. How quantum computing is a threat to current security algorithms.	04	CO3

		1		
IV	IP Security, Transport level security and Email Security	IP level Security: Introduction to IPSec, IPSec Architecture, Protection Mechanism (AH and ESP), Transport level security: VPN. Need Web Security considerations, Secure Sockets Layer (SSL)Architecture, Transport Layer Security (TLS), HTTPS, Secure Shell (SSH) Protocol Stack. Email Security: Secure Email S/MIME Self-Learning Topic: Study gmail security and privacy from gmail help	07	CO4
V	Network Management Security and Network Access Control	Network Management Security:SNMPv3, NAC:Principle elements of NAC,Principle NAC enforcement methods, How to implement NAC Solutions, Use cases for network access control Self-Learning Topic: Explore any opensource network management security tool	6	CO5
VI	System Security	IDS, Firewall Design Principles, Characteristics of Firewalls, Types of Firewalls Self-Learning Topic: Study firewall rules table	04	№ CO6

Text Books

- William Stallings, Cryptography and Network Security, Principles and Practice, 6th Edition, Pearson Education, March 2013.
- 2 Behrouz A. Ferouzan, "Cryptography & Network Security", Tata Mc Graw Hill.
- 3 Mark Stamp's Information Security Principles and Practice, Wiley
- 4 Bernard Menezes, "Cryptography & Network Security", Cengage Learning.

References:

- 1 Applied Cryptography, Protocols, Algorithms and Source Code in C, Bruce Schneier, Wiley.
- 2 Cryptography and Network Security, Atul Kahate, Tata Mc Graw Hill.
- 3 www.rsa.com

Online Resources

- 1. https://swayam.gov.in/
- 2. https://nptel.ac.in/
- 3. https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marksQ.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
IoTCSBCC602	IoT Architecture and Protocols	03			03			03

Course Code	Course Name		Examination Scheme						
				ory Marks		Term			
		Int	ernal asso	essment	End	Work	Practical	Oral	Total
		Test 1	Test 2	Avg. of 2 Tests	Sem. Exam				
IoTCSBCC 602	IoT Architecture and Protocols	20	20	20	80				100

Course Objectives:

Sr. No.	Course Objectives
The course	aims:
1	To understand IoT Characteristics and Conceptual Framework.
2	To comprehend network architecture and design of IoT

3	To understand smart objects in IoT.
4	To correlate the connection of smart objects and IoT access technologies.
5	To explore network layer and application layer protocols for IoT.
6	To explore IoT security aspect.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per
		Bloom's Taxonomy
On success	ful completion, of course, learner/student will be able to:	
1	Describe the IoT Characteristics and Conceptual Framework.	L1,L2
2	Differentiate between the levels of the IoT architectures.	L1,L2
3	Interpret sensor network and its components.	L1,L2
4	Analyze the IoT access technologies.	L1,L2,L3,L4
5	Illustrate various protocols at network layer and application layer for IoT.	L1,L2,L3
6	Analyze and evaluate security issues in IoT and risk analysis structure.	L1,L2,L3,L4

Prerequisite:

- Python programming
 C programing language
 Computer Networks

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mappin g
0	Prerequisite	ports, Timers ,Programming of controller , How to use IDE to write code of microcontroller, TCP-IP protocol stack	02	
I	Introduction to IoT	1.1 Introduction to IoT- Defining IoT, Characteristics of IoT, Conceptual Framework of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs, Basics of networking Communication protocol, wireless sensor networks. 1.2 Convergence of IT and OT, IoT Challenges, IoT protocol vs Web Protocol stack Self-learning Topics: Hardware and software development tools for - Arduino, NodeMCU, ESP32, Raspberry Pi pico	04	CO1
II	IoT Network Architecture and Design	2.1 Drivers Behind New Network Architectures: Scale, Security, Constrained Devices and Networks, Data, Legacy Device Support 2.2 Architecture: The IoT World Forum (IoTWF) Standardized Architecture: Layer 1-7, IT and OT Responsibilities in the IoT Reference Model, Additional IoT Reference Models, A Simplified IoT Architecture, The Core IoT Functional Stack::Layer 1-3, Analytics Versus Control Applications, Data Versus Network Analytics Data Analytics Versus Business Benefits, Smart Services, 2.3 IoT Data Management and Compute Stack: Fog Computing, Edge Computing, The Hierarchy of Edge, Fog, and Cloud	06	CO2

III	Smart Objects IoT	3.1 Sensors, Actuators, and Smart Objects, Sensors, Actuators, 3.2 Micro-Electro-Mechanical Systems (MEMS) Smart Objects: A Definition, Trends in Smart Objects, 3.3 Sensor Networks, Wireless Sensor Networks (WSNs), Communication Protocols for WSN,RFID,NFC Self-learning Topics: RFID in Libraries	04	CO3
IV	Connecting Smart Objects	4.1 Communications Criteria: Range, Frequency Bands, Power Consumption, Topology, Constrained Devices, Constrained-Node Networks, Data Rate and Throughput, Latency and Determinism, Overhead and Payload, 4.2 IoT Access Technologies: Standardization and Alliances, Physical Layer, MAC Layer, Topology, Security and Conclusion of IEEE 802.15.4, IEEE 802.15.4g and 802.15.4e, IEEE 1901.2a, IEEE 802.11ah, LoRaWAN, and NB-IoT and Other LTE Variations, LTE Cat 0, LTE-M, NB-IoT Self-learning Topics: case studies	08	CO4
V	IoT Network Layer and Application protocols	5.1 The Business Case for IP, The Key Advantages of Internet Protocol, Adoption or Adaptation of the Internet Protocol, The Need for Optimization, Constrained Nodes, Constrained Networks IP Versions, Optimizing IP for IoT, 5.2 From 6LoWPAN to 6Lo, Header Compression, Fragmentation, Mesh Addressing, Mesh-Under Versus Mesh-Over Routing, 6Lo Working Group, 6TiSCH, RPL, Objective Function Rank, RPL Headers, Metrics, Authentication and Encryption on Constrained Nodes, ACE, DICE, Profiles and Compliances, Internet Protocol for Smart Objects Alliance, Wi-SUN Alliance, Thread, IPv6 Ready Logo 5.3 The Transport Layer, IoT Application Transport Methods, Generic Web-Based Protocols, 5.4 IoT Application Layer Protocols, CoAP, MQTT, AMQP Self-learning Topics: case studies	08	CO5
VI	Securing IoT	6.1 A Brief History of OT Security Common Challenges in OT Security: Erosion of Network Architecture, Pervasive Legacy Systems, Insecure Operational Protocols like Modbus, DNP3, ICCP, OPC, (IEC) Protocols, Device Insecurity 6.2 Security Knowledge: IT and OT Security Practices and Systems Vary, The Purdue Model for Control Hierarchy, OT Network Characteristics Impacting Security, Security Priorities: CIA, Security Focus 6.3 Formal Risk Analysis Structures: OCTAVE and FAIR, FAIRThe Phased Application of Security in an Operational Environment, Secured Network Infrastructure and Assets, Deploying Dedicated Security Appliances, Higher-Order Policy Convergence and Network Monitoring Self-learning Topics: OWASP IoT Top 10 attacks, X.509, SSL & TSL basics	06	CO6

Text Books:

- 1. Arsheep Bahga (Author), Vijay Madisetti, Internet Of Things: A Hands-On Approach Paperback, Universities Press, Reprint 2020
- **2.** David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, IoT Fundamentals Networking Technologies, Protocols, and Use Cases for the Internet of Things CISCO.

References:

- 1. Pethuru Raj, Anupama C. Raman, The Internet of Things: Enabling Technologies, Platforms, and Use Cases by , CRC Press.
- 2. Raj Kamal, Internet of Things, Architecture and Design Principles, McGraw Hill Education, Reprint 2018.
- **3.** Perry Lea, Internet of Things for Architects: Architecting IoT solutions by implementing sensors, communication infrastructure, edge computing, analytics, and security, Packt Publications, Reprint 2018.
- 4. Amita Kapoor, "Hands on Artificial intelligence for IoT", 1st Edition, Packt Publishing, 2019.
- **5.** Sheng-Lung Peng, Souvik Pal, Lianfen Huang Editors: Principles of Internet of Things (IoT)Ecosystem:Insight Paradigm, Springer

Online References:

- 1. https://owasp.org/www-project-internet-of-things/
- 2. NPTEL: Sudip Misra, IIT Khargpur, Introduction to IoT: Part-1, https://nptel.ac.in/courses/106/105/106105166/
- **3.** NPTEL: Prof. Prabhakar, IISc Bangalore, Design for Internet of Things, https://onlinecourses.nptel.ac.in/noc21_ee85/preview

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marksQ.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)

A total of **four questions** need to be answered.

Course Code	Course Name	1	Theory	Practical	Tutorial	Theory	Practical/ Oral	Tutorial	Total
IoTCSBCDLO 603	Blockchain Technology		03			03			03

Course Code	Course Name	Examination Scheme							
		Theory Marks							
		Internal assessment			End	Term	Practical	Oral	Total
		Test1	Test 2	Avg. of 2	Sem.	Work	Tactical	Orai	Total
		1 CSt1	1 est 2	Tests	Exam				
IoTCSBCDLO6 03	Blockchain Technology	20	20	20	80		1		100

Course Objectives:

Sr.No	Course Objectives
1	To get acquainted with the concept of Distributed ledger system and Blockchain.
2	To learn the concepts of consensus and mining in Blockchain through the Bitcoin network.
3	To understand Ethereum and develop-deploy smart contracts using different tools and frameworks.
4	To understand permissioned Blockchain and explore Hyperledger Fabric.
5	To understand different types of crypto assets.
6	To apply Blockchain for different domains IOT, AI and Cyber Security.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of
		attainment as per
		Bloom's Taxonomy
On success	sful completion, of course, learner/student will be able to:	
1	Describe the basic concept of Blockchain and Distributed Ledger Technology.	L1,L2
2	Interpret the knowledge of the Bitcoin network, nodes, keys, wallets and	L1,L2,L3
	transactions	
3	Implement smart contracts in Ethereum using different development frameworks.	L1,L2,L3
4	Develop applications in permissioned Hyperledger Fabric network.	L1,L2,L3
5	Interpret different Crypto assets and Crypto currencies	L1,L2,L3
6	Analyze the use of Blockchain with AI, IoT and Cyber Security using case studies.	14,

Prerequisite: Cryptography and Distributed Systems

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Cryptography and	Hash functions, Public – Private keys, SHA, ECC,	02	
	Distributed Systems	Digital signatures, Fundamental concepts of Distributed		
	(prerequisite)	systems		
I	Introduction to DLT	Distributed Ledger Technologies (DLTs) Introduction,	04	CO1
	and Blockchain	Types of Blockchains		
		Blockchain: Origin, Phases, Components		
		Block in a Blockchain: Structure of a Block, Block		
		Header Hash and Block Height, The Genesis Block,		
		Linking Blocks in the Blockchain, Merkle Tree.		
		Self-learning Topics: Blockchain Demo		
II	Consensus and	What is Bitcoin and the history of Bitcoin, Bitcoin	08	CO2
	Mining	Transactions, Bitcoin Concepts: keys, addresses and		
		wallets, Bitcoin Transactions, validation of transactions,		
		PoW consensus		
		Bitcoin Network : Peer-to-Peer Network Architecture,		
		Node Types and Roles, Incentive based Engineering,		
		The Extended Bitcoin Network, Bitcoin Relay Networks,		
		Network Discovery, Full Nodes, Exchanging		
		"Inventory", Simplified Payment Verification (SPV)		
		Nodes, SPV Nodes and Privacy, Transaction Pools,		
		Blockchain Forks		
		Self-learning Topics: Study and compare different		
		consensus algorithms like PoA, PoS, pBFT		
III	Permissionless	Components, Architecture of Ethereum, Miner and	10	CO3
	Blockchain:	mining node, Ethereum virtual machine, Ether, Gas,		
	Ethereum	Transactions, Accounts, Patricia Merkle Tree, Swarm,		
		Whisper and IPFS, Ethash, End to end transaction in		

		Ethereum,		
		Smart Contracts: Smart Contract programming using		
		solidity, Metamask (Ethereum Wallet), Setting up		
		development environment, Use cases of Smart Contract,		
		Smart Contracts: Opportunities and Risk.		
		Smart Contract Deployment: Introduction to Truffle,		
		Use of Remix and test networks for deployment		
		Self-learning Topics: Smart contract development using		
		Java or Python		
IV	Permissioned	Introduction to Framework, Tools and Architecture of	07	CO4
	Blockchain:	Hyperledger Fabric Blockchain.		
	Hyperledger Fabric	Components: Certificate Authority, Nodes, Chain codes,		
		Channels, Consensus: Solo, Kafka, RAFT		
		Designing Hyperledger Blockchain		
		Self-learning Topics: Fundamentals of Hyperledger		
		Composer		
V	Crypto assets and	ERC20 and ERC721 Tokens, comparison between	04	CO5
	Cryptocurrencies	ERC20 & ERC721, ICO, STO, Different Crypto		
		currencies		
		Self-learning Topics: Defi, Metaverse, Types of		
		cryptocurrencies		
VI	Blockchain	Blockchain in IoT, AI, Cyber Security	04	CO6
	Applications & case	Self-learning Topics: Applications of Blockchain in		
	studies	various domains Education, Energy, Healthcare, real-		
		estate, logistics, supply chain		

Text Books:

- 1. "Mastering Bitcoin, PROGRAMMING THE OPEN BLOCKCHAIN", 2nd Edition by Andreas M. Antonopoulos, June 2017, Publisher(s): O'Reilly Media, Inc. ISBN: 9781491954386.
- 2. Mastering Ethereum, Building Smart Contract and Dapps, Andreas M. Antonopoulos Dr. Gavin Wood, O'reilly.
- 3. Blockchain Technology, Chandramouli Subramanian, Asha A George, Abhillash K. A and Meena Karthikeyen, Universities press.
- 4. Hyperledger Fabric In-Depth: Learn, Build and Deploy Blockchain Applications Using Hyperledger Fabric, Ashwani Kumar, BPB publications
- 5. Solidity Programming Essentials: A beginner's Guide to Build Smart Contracts for Ethereum and Blockchain, Ritesh Modi, Packt publication
- 6. Cryptoassets: The Innovative Investor's Guide to Bitcoin and Beyond, Chris Burniske & Jack Tatar.

Reference:

- 1. Mastering Blockchain, Imran Bashir, Packt Publishing 2. Mastering Bitcoin Unlocking Digital Cryptocurrencies, Andreas M. Antonopoulos, O'Reilly Media
- 2. Blockchain Technology: Concepts and Applications, Kumar Saurabh and Ashutosh Saxena, Wiley.
- 3. The Basics of Bitcoins and Blockchains: An Introduction to Cryptocurrencies and the Technology that Powers Them, Antony Lewis.for Ethereum and Blockchain, Ritesh Modi, Packt publication.
- 4. Mastering Bitcoin Unlocking Digital Cryptocurrencies, Andreas M. Antonopoulos, O'Reilly Media

Online References:

- 1. NPTEL courses:
 - a. Blockchain and its Applications,
 - b. Blockchain Architecture Design and Use Cases
- 2. www.swayam.gov.in/
- 3. www.coursera.org
- 4. https://ethereum.org/en/
- 5. https://www.trufflesuite.com/tutorials

- 6. https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.h
- 7. Blockchain demo: https://andersbrownworth.com/blockchain/
- 8. Blockchain Demo: Public / Private Keys & Signing: https://andersbrownworth.com/blockchain/public-private-keys/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marksQ.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical/ Oral	Tutorial	Total
IoTCSBCC604	WEB X.0	03			03			03

Course Code	Course	Evancing tion Salama
	Name	Examination Scheme

		Theory Marks Internal assessment End			Term	D4'1	Owel	T-4-1	
		Test1	Test 2	Avg. of 2 Tests	Sem. Exam	Work	Practical	Oral	Total
IoTCSBCC604	WEB X.0	20	20	20	80				100

Course Objectives:

Sr. No.	Course Objectives
The cours	e aims:
1	To understand the digital evolution of web technology.
2	To learn TypeScript and understand how to use it in web applications.
3	To learn the fundamentals of Node.js.
4	To make Node.js applications using the express framework.
5	To enable the use of AngularJS to create web applications that depend on the Model-View-Controller Architecture.
6	To gain expertise in a leading document-oriented NoSQL database, designed for speed, scalability, and developer agility using MongoDB.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On success	iful completion, of course, learner/student will be able to:	V
1	Understand the basic concepts related to web analytics and semantic web.	L1,L2
2	Understand how TypeScript can help you eliminate bugs in your code and enable you to scale your code.	L1,L2
3	Develop back-end applications using Node.js.	L1,L2,L3
4	Construct web based Node is applications using Express.	L1,L2,L3
5	Understand AngularJs framework and build dynamic, responsive single-page web applications.	L1,L2,L3
6	Apply MongoDB for frontend and backend connectivity using REST API.	L1,L2,L3

Prerequisite: HTML5, CSS3, JavaScript.

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Introduction to HTML5,CSS3, Basics of JavaScript	02	-
I	Introduction to WebX.0	Evolution of WebX.0; Web Analytics 2.0: Introduction to Web Analytics, Web Analytics 2.0, Clickstream Analysis, Strategy to choose your web analytics tool, Measuring the success of a website; Web3.0 and Semantic Web: Characteristics of Semantic Web, Components of Semantic Web, Semantic Web Stack, N-Triples and Turtle, Ontology, RDF and	04	CO1

		SPARQL Self-learning Topics: Semantic Web Vs AI, SPARQL Vs SQL.		
II	TypeScript	Overview, TypeScript Internal Architecture, TypeScript Environment Setup, TypeScript Types, variables and operators, Decision Making and loops, TypeScript Functions, TypeScript Classes and Objects, TypeScript Inheritance and Modules Self-learning Topics: Javascript Vs TypeScript	06	CO2
III	Node.js	Introducing the Node.js-to-Angular Stack (MEAN Stack), Environment setup for Node.js , First app, Asynchronous programming, Callback concept, Event loops, REPL, NPM, Event emitter, Buffers, Streams, Networking module, File system, Web module. Self-learning Topics: Node.js with MongoDB.	07	CO3
IV	Express	Introduction to Express ,Installing Express,Creating First Express application,The application, request, and response objects,Configuring Routes,Understanding Middleware,cookies, Session, Authentication Self-learning Topics: ExpressJs Templates	06	CO4
V	Introduction to AngularJS	Overview of AngularJS, Need of AngularJS in real websites, AngularJS modules, AngularJS built-in directives, AngularJS custom directives, AngularJS expressions, AngularJS Data Binding, AngularJS filters, AngularJS controllers, AngularJS scope, AngularJS dependency injection, AngularJS Services, Form Validation, Routing. Self-learning Topics: MVC model, DOM model.	07	CO5
VI	MongoDB and Building REST API using MongoDB	MongoDB: Understanding MongoDB, MongoDB Data Types, Administering User Accounts, Configuring Access Control, Adding the MongoDB Driver to Node.js, Connecting to MongoDB from Node.js, Accessing and Manipulating Databases, Manipulating	07	CO6

Managa DD. Dagumanta from Mada is	
MongoDB Documents from Node.js,	
Accessing MongoDB from Node.js,	
Using Mongoose for Structured	
Schema and Validation.	
REST API : Examining the rules of	
REST APIs, Evaluating API patterns,	
Handling typical CRUD functions	
(Create, Read, Update, Delete), Using	
Express and Mongoose to interact with	
MongoDB, Testing API endpoints.	
Self-learning Topics: MongoDB vs	
SQL Databases	

Text & Reference Books:

- 1.Boris Cherny, "Programming TypeScript- Making Your Javascript Application Scale", O'Reilly Media Inc.
- 2. Amos Q. Haviv, "MEAN Web Development", PACKT Publishing
- 3.Brad Dayley, Brendan Dayley, Caleb Dayley, "Node.js, MongoDB and Angular Web Development: The definitive guide to using the MEAN stack to build web applications", 2nd Edition, Addison-Wesley Professional
- 5. Adam Bretz and Colin J. Ihrig, "Full Stack JavaScript Development with MEAN", SitePoint.
- 4. Dr. Deven Shah, "Advanced Internet Programming", StarEdu Solutions. References:
- 1. Simon Holmes Clive Harber, "Getting MEAN with Mongo, Express, Angular, and Node", Manning Publications.
- 2. Yakov Fain and Anton Moiseev, "TypeScript Quickly", Manning Publications.

Online References:

- 1.https://www.coursera.org
- 2. https://udemy.com
- 3. https://www.tutorialspoint.com/meanjs/meanjs_overview.htm

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marksQ.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)

A total of **four questions** need to be answered

Course Code	Course Name	Teaching So (Contact H		Credits Assigned			
Course Coue	Course realite	Theory	Practical	Theory	Practical	Total	
IoTCSBCL601	ToTCSBCL601 CNS Lab		2		1	1	

		Examination Scheme							
	Course Name			Theory					
Course Code		Internal Assessment		End Duran TV 1 / 0		Pract / Oral	LOTAL		
		Test1	Test 2	Avg.					
IoTCSBCL601	CNS Lab			i			25	25	50

Lab Objectives:

Sr No	Lab Objectives
1	To apply the knowledge of symmetric cryptography to implement classical ciphers
2	To analyze and implement public key encryption algorithms, hashing and digital signature algorithms
3	To explore the different network reconnaissance tools to gather information about networks
4	To explore the tools like sniffers, port scanners and other related tools for analyzing
5	To Scan the network for vulnerabilities and simulate attacks
6	To set up intrusion detection systems using open source technologies
	and to explore email security.

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive Levels of Attainment as per Bloom's Taxonomy
Upon C	ompletion of the course the learner/student should be able to:	
1	Illustrate symmetric cryptography by implementing classical ciphers	L1,L2,L3
2	Demonstrate Key management, distribution and user authentication	L1,L2,L3
3	Explore the different network reconnaissance tools to gather information about networks	L1,L2,L3
4	Use tools like sniffers, port scanners and other related tools for analyzing packets in a network	L1,L2,L3
5	Use open source tools to scan the network for vulnerabilities and simulate	L1,L2,L3

	attacks	
6	Demonstrate the network security system using open source tools	L1,L2,L3

Prerequisite: Basic concepts of Computer Networks & Network Design, Operating System

Hardware & Software requirements:

Hardware Specifications	Software Specifications
PC with following Configuration	GPG tool, WHOIS, dig,traceroute, nslookup, wireshark,
1. Intel Core i3/i5/i7	nmap, keylogger, kali lunix,
2. 4 GB RAM	
3. 500 GB Hard disk	

DETAILED SYLLABUS:

Sr. No.	Detailed Content	Hours	LO Mapping
I	Classical Encryption techniques (mono-alphabetic and poly-alphabetic substitution techniques: Vigenere cipher, playfair cipher)	04	LO1
П	1)Block cipher modes of operation using a)Data Encryption Standard b)Advanced Encryption Standard (AES). 2)Public key cryptography: RSA algorithm. 3)Hashing Techniques:HMAC using SHA 4)Digital Signature Schemes – RSA, DSS.	05	LO2
III	1) Study the use of network reconnaissance tools like WHOIS, dig,traceroute, nslookup to gather information about networks and domain registrars. 2)Study of packet sniffer tools wireshark, :- a. Observer performance in promiscuous as well as non-promiscuous mode. b. Show the packets can be traced based on different filters.	04	LO3
IV	 Download and install nmap. Use it with different options to scan open ports, perform OS fingerprinting, ping scan, tcp port scan, udp port scan, etc. 	04	LO4
V	a)Keylogger attack using a keylogger tool. b) Simulate DOS attack using Hping or other tools c) Use the NESSUS/ISO Kali Linux tool to scan the network for vulnerabilities.	05	LO5
VI	 Set up IPSec under Linux. Set up Snort and study the logs. Explore the GPG tool to implement email security 	04	LO6

Text Books

- 1 Build your own Security Lab, Michael Gregg, Wiley India.
- 2 CCNA Security, Study Guide, TIm Boyles, Sybex.

- Hands-On Information Security Lab Manual, 4th edition, Andrew Green, Michael Whitman, Herbert Mattord.
- 4 The Network Security Test Lab: A Step-by-Step Guide Kindle Edition, Michael Gregg.

References:

- 1 Network Security Bible, Eric Cole, Wiley India.
- 2 Network Defense and Countermeasures, William (Chuck) Easttom.
- Principles of Information Security + Hands-on Information Security Lab Manual, 4th Ed., Michael E. Whitman, Herbert J. Mattord.

Online Resource:

- 1. http://cse29-iiith.vlabs.ac.in/
- 2. https://www.dcode.fr/en

List of Experiments.:

- 1. Breaking the Mono-alphabetic Substitution Cipher using Frequency analysis method.
- 2. Design and Implement a product cipher using Substitution ciphers.
- 3. Cryptanalysis or decoding Playfair, vigenere cipher.
- 4. Encrypt long messages using various modes of operation using AES or DES
- 5. Cryptographic Hash Functions and Applications (HMAC): to understand the need, design and applications of collision resistant hash functions.
- 6. Implementation and analysis of RSA cryptosystem and Digital signature scheme using RSA
- 7. Study the use of network reconnaissance tools like WHOIS, dig, traceroute, nslookup to gather information about networks and domain registrars.
- 8. Study of packet sniffer tools wireshark: -
- a. Observer performance in promiscuous as well as non-promiscuous mode.
- b. Show the packets can be traced based on different filters.
- 9. Download, install nmap and use it with different options to scan open ports, perform OS fingerprinting, ping scan, tcp port scan, udp port scan, etc.
- 10. Study of malicious software using different tools:
 - a) Keylogger attack using a keylogger tool.
 - b) Simulate DOS attack using Hping or other tools
 - c) Use the NESSUS/ISO Kali Linux tool to scan the network for vulnerabilities.
- 11. Study of Network security by
 - a) Set up IPSec under Linux.
 - b) Set up Snort and study the logs.
 - c) Explore the GPG tool to implement email security

Term Work: Term Work shall consist of at least 10 to 12 practicals based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus

		Teaching Scheme (Contact Hours) Credits Assigned						
Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical / Oral	Tutorial	Total
IoTCSBCL602	IoT		2	-		1		01
	Architecture and Protocols Lab							

Course Code	Course Name	Examination Scheme				
		Internal assess Test 1 Test 2	Avg. of 2 Tests End Sem. Exam	Term Work	Practical/ Oral	Total
IoTCSBCL 602	IoT Architecture and Protocols Lab			25	25	50

Lab Objectives:

Sr. No.	Lab Objectives		
The Lab a	nims:		
1	To Understand the definition and significance of the Internet of Things.		
2	To Discuss the architecture, operation, and business benefits of an IoT solution.		
3	To Examine the potential business opportunities that IoT can uncover.		
4	To Explore the relationship between IoT, cloud computing, and Data Analytics.		
5	To Identify how IoT differs from traditional data collection systems.		
6	To Explore the interconnection and integration of the physical world and be able to design & develop IOT		
	applications.		

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy	
On successful completion, of course, learner/student will be able to:			
1	Adapt different techniques for data acquisition using various IoT sensors	L1,L2,L3	

	for different applications.	
2	Demonstrate the working of actuators based on the collected data.	L1,L2,L3
3	Use different IoT simulators and correlate working of IoT protocols.	L1,L2,L3
4	Adapt different techniques for Integrating IoT services to other third-party Clouds.	L1,L2,L3
5	Execute data analysis and encryption methodologies for deployment of IoT applications.	L1,L2,L3,L4
6	Implement IoT protocols for communication to realize the revolution of internet in mobile devices, cloud and sensor networks.	L1,L2,L3,L4

- Prerequisite:1. Python programming2. C programing language3. Computer Networks

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above.	Contiki, Cooja or any other simulator. AWS/Azure
Arduino using Wifi/Raspberry Pi	services. Internet Connection

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Experimentation with Microprocessor and Microcontroller, Experimentation with python and c	02	
I	Arduino	Introduction to Arduino, Hardware requirements, Software requirements, Arduino Programming Language, Arduino Uno Wired & Wireless connectivity, LCD commands, Serial Communication commands. Program for blinking LED using Arduino. Traffic Light pattern using Arduino. ESP8266 WiFi Module	05	LO1, LO2
II	Raspberry Pi	Introduction to Raspberry Pi, Installation of NOOBS and Raspbian on SD card, Libraries on Raspberry Pi, getting static IP address of Raspberry Pi, Interfacing of Relay, DHT11, DC Motor and LCD with Raspberry Pi.	05	LO1,LO2
III	Contiki OS	Contiki OS: History of Contiki OS, Applications, Features, ,Communication Components in Contiki OS, Cooja simulator ,Running Cooja Simulator,	05	LO3
IV	Cooja Simulator	Using the Contiki OS with the Cooja simulator to program the IoT for broadcasting data from sensors	03	LO5,LO6
V	Protocols and Security with Cooja	Understanding of 6LowPAN, COAP and protocol implementation in Cooja. Encryption Decryption techniques for IoT	03	LO5,LO6
VI	IoT data to Cloud	Installing the Remote desktop server. Installation of Pi camera, Face recognition, serial peripheral interface using Raspberry Pi DHT11 data logger with ThingSpeak/thingsboard/ AWS/ Azure server .	03	LO4,L06

Text & Reference Books:

- 1. Jake VanderPlas," Python Data Science Handbook", O'Reilly publication
- 2. Joakim Verona," Practical DevOps", PACKT publishing
- 3. Honbo Zhou," The internet of things in the cloud", CRC press, Taylor and Francis group
- 4. Perry Lea," Internet of things for architects", PACKT publishing

Online References:

- 1. https://spoken-tutorial.org/watch/Arduino/Introduction+to+Arduino/English/
- 2. https://pythonprogramming.net/introduction-raspberry-pi-tutorials/
- 3. https://iotbytes.wordpress.com/basic-iot-actuators/
- 4. http://www.contiki-os.org/
- 5. https://www.bevywise.com/iot-simulator/
- 6. https://mqtt.org/

List of Experiments.

- 1. To study and implement interfacing of different IoT sensors with Raspberry Pi pico/Arduino/ModeMCU.
- 2. To study and implement interfacing of actuators based on the data collected using IoT sensors. (like led switch ON/OFF, stepper motor)
- 3. To study and demonstrate Contiki OS for RPL (like Create 2 border router and 10 REST clients, Access border router from other network (Simulator))
- 4. To study and demonstrate working of 6LoWPAN in Contiki OS (simulator)
- 5. Write a program on Raspberry Pi to push and retrieve the data from cloud like thingspeak/thingsboard/AWS/ Azure etc
- 6. To study and implement IoT Data processing using Pandas.
- 7. Write a program on Arduino / Raspberry Pi subscribe to MQTT broker for temperature data and print it
- 8. Write a program to create TCP Server on Arduino/Raspberry Pi and respond with humidity data to TCP client when Requested
- 9. Write a program for ESP8266 DHT11/DHT22 Temperature and Humidity Web Server with Arduino IDE
- 10. Write a program to Control Your ESP8266 From Anywhere in the World
- 11. Write a program for Arduino / Raspberry Pi Publishing MQTT Messages to ESP8266
- 12 Write a program to collect data from sensor encrypt data send it to receiver (server) and decrypt is at receiving end Ardino/Raspberry Pi/ Contiki OS (simulator)

Term Work: Term Work shall consist of at least 10 practicals based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks

(Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus

		Teaching Scheme (Contact Hours)			Credits Assigned			
Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical & Oral	Tutorial	Total
IoTCSBCL603	Blockchain Technologies Lab		2			1		01

			Examination Scheme						
Co	Course Code Course		Theory Marks				T.	TD 41 1/	
			Inte	Internal assessment		End	Term	Practical/	Total
			Test1	Test 2	Avg. of 2 Tests	Sem. Exam	Work	Oral	
IoT	CSBCL603	Blockchain Technologies Lab					25	25	50

Lab Objectives:

Sr.No	Lab Objectives
The Lab a	aims:
1	To develop and deploy smart contracts on local Blockchain.
2	To deploy the smart contract on test networks.
3	To develop and test smart contract using Remix IDE and Metamask.
4	To construct a permissioned Hyperledger fabric network.
5	To design and develop crypto currency.
6	To develop and test a DApp using Ethereum/Hyperledger

Lab Outcomes:

Sr.No	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Develop and test smart contract on local Blockchain.	L3,L4
2	Develop and test smart contract on Ethereum test networks.	L3,L4
3	Write and deploy smart contract using Remix IDE and Metamask.	L4
4	Write and deploy chain code in Hyperledger Fabric.	L4
5	Design and develop Cryptocurrency.	L4
6	Develop a Full-fledged DApp using Ethereum/Hyperledger.	L5

Prerequisite: Java, python, Javascript

DETAILED SYLLABUS:

Sr.	Module	Detailed Content	Hours	LO
No.				Mapping
0	D	Jane Buthan Jane Carint	02	
0	Prerequisite	Java, Python, JavaScript	02	
I	Local Blockchain	Introduction to Truffle, establishing	03	LO1
	and smart contracts	local Blockchain using Truffle,		•
		Solidity programming language, chain		
		code(Java/JavaScript/Go), deployment		
		on Truffle local Blockchain		
		Mari During Allered College		
II	Daularen 1	Mini Project: Allocation of the groups Ethereum Test networks	03	1.02
11	Deployment and	(Ropsten/Gorelli/Rinkeby),deployment	0.5	LO2
	publishing smart	on test networks, Web3.js/Web3.py for		
	contracts on	interaction with Ethereum smart	•	
	Ethereum test	contract		
	network	Mini Project: Topic validation and		
		finalizing software requirements		
III	Remix IDE and	Smart contract development and	04	LO3
	Metamask	deployment using Metamask and		
		Remix		
		Mini Project: Study the required		
		programming language for smart		
IV	Chain code	contract/chain code	0.4	LO4
1 V		Chain code deployment in Hyperledger fabric	04	LO4
	deployment in	Mini project: Study required front end		
	Hyperledger Fabric	tools		
V	Crypto currency	Design and develop Crypto currency	04	LO5
	Design	Mini Project: Study Integration of		
		front end with smart contract/chain		
		code		
VI	Mini-project on	Implementation of Mini Project	06	LO6
	Design and	1. Design, configure and testing of		
	Development of a	mini project		
	DApps using	Report submission as per guidelines		
	Ethereum/Hyperledg			
	er Fabric			
Mini nr	• 4	<u> </u>	l	

Mini project

1. Students should carry out mini-project in a group of three/four students with a subject In-charge

- 2. The group should meet with the concerned faculty during laboratory hours and the progress of work discussed must be documented.
- 3. Each group should perform a detailed literature survey and formulate a problem statement.
- 4. Each group will identify the hardware and software requirement for their defined mini project problem statement.
- 5. Design, develop and test their smart contract/chain code.
- 6. Each group may present their work in various project competitions and paper presentations

Documentation of the Mini Project

The Mini Project Report can be made on following lines:

- 1. Abstract
- 2. Contents
- 3. List of figures and tables
- 4. Chapter-1 (Introduction, Literature survey, Problem definition, Objectives, Proposed Solution, Technology/platform used)
- 5. Chapter-2 (System design/Block diagram, Flow chart, Software requirements, cost estimation)
- 6. Chapter-3 (Implementation snapshots/figures with explanation, code, future directions)
- 7. Chapter-4 (Conclusion)
- 8. References

Text Books:

- 1. Ethereum Smart Contract Development, Mayukh Mukhopadhyay, Packt publication.
- 2. Solidity Programming Essentials: A Beginner's Guide to Build Smart Contracts for Ethereum and Blockchain, Ritesh Modi, Packt publication.
- 3. Hands-on Smart Contract Development with Hyperledger Fabric V2, Matt Zand, Xun Wu and Mark Anthony Morris, O'Reilly.

References:

- 1. Mastering Blockchain, Imran Bashir, Packt Publishing
- 2. Introducing Ethereum and Solidity, Chris Dannen, APress.
- 3. Hands-on Blockchain with Hyperledger, Nitin Gaur, Packt Publishing.

Online References:

- 1. https://trufflesuite.com/
- 2. https://metamask.io/
- 3. https://remix.ethereum.org/
- 4. https://www.hyperledger.org/use/fabric

Term-Work: Term-Work shall consist of 5 experiments and Mini-Project on above guidelines/syllabus. Also Term-work must include at least 2 assignments and Mini-Project report.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (5 Experiments + Mini Project) + 5 Marks (Assignments) +

5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the Mini Project and Presentation.

		Teaching Scheme (Contact Hours)			Credits Assigned			
Course Čode	Course Name	Theory	Practical	Tutorial	Theory	Practical & Oral	Tutorial	Total
IoTCSBCL604	Web Lab		2			1		01

Course Code	Course Name		Examination Scheme						
			Theory Marks						
		Int	ernal asse	essment	End	Term	Practical/	Total	
		Test1	Test 2	Avg. of 2 Tests	Sem. Exam	Work	Oral	Totai	
IoTCSBCL604	Web Lab					25	25	50	

Lab Objectives:

Sr No	Lab Objectives
-------	----------------

1	To familiarize with Open Source Tools for Web Analytics and Semantic Web.
2	To familiarize with Programming in TypeScript for designing Web Applications.
3	To orient students for developing Node.js backend applications.
4	To orient students for developing Express applications.
5	To understand AngularJS Framework for Single Page Web Applications.
6	To use REST API and MongoDB for Frontend and Backend Connectivity.

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive Levels of Attainment as per Bloom's Taxonomy
Upon C	ompletion of the course the learner/student should be able to:	
1	Understand open source tools for web analytics and semantic web apps development and deployment.	L1, L2
2	Understand the basic concepts of TypeScript for designing web applications.	L1, L2, L3
3	Construct back-end applications using Node.js.	L1, L2,L3
4	Construct back end applications using Express.	L1, L2,L3
5	Implement Single Page Applications using AngularJS Framework.	L1, L2, L3
6	Develop REST web services using MongoDB.	L1, L2, L3

Prerequisite: HTML5,CSS3 and Basics of JavaScript

Hardware & Software requirements:

Hardware Specifications	Software Specifications
PC with following Configuration	Angular IDE, Visual Studio Code, Notepad++,
1. Intel Core i3/i5/i7	Python Editors, MySQL, XAMPP, MongoDB,
2. 4 GB RAM	JDK
3. 500 GB Hard disk	

DETAILED SYLLABUS:

Sr.	Module	Detailed Content	Hours	LO
No.				Mapping

I	W 1 A 1 0			1.01
	Web Analytics & Semantic Web	Study Any 1 tool in each 1. Study web analytics using open source tools like Matomo, Open Web Analytics, AWStats, Countly, Plausible.	02	LO1
		2. Study Semantic Web Open Source Tools like Apache TinkerPop, RDFLib, Apache Jena, Protégé, Sesame.		
II	TypeScript	Perform Any 2 from the following	04	LO2
		 Small code snippets for programs like Hello World, Calculator using TypeScript. Inheritance example using TypeScript Access Modifiers example using TypeScript Building a Simple Website with TypeScript 		
III	Node.js	Perform Any 2 from the following 1. Build Hello World App in Node.js 2. Stream and Buffer in Node.js 3. Modules in Node.js(Networking, File system, Web module)	06	LO3
IV	Express	Perform Any 2 from the following 1. Configuring Express Settings and creating Express application using request and response objects. 2. Build Express application by Sending and Receiving Cookies. 3. Create an Express application to implement sessions.	04	LO4
V	AngularJs	Perform Any 2 from the following .Create a simple HTML "Hello World" Project using AngularJS Framework and apply ng-controller, ng- model, expression and filters. Implement a single page web application using AngularJS Framework including Services, Events, Validations (Create functions and add events, add HTML validators, using \$valid property of Angular, etc.) Create an application for like Students Record using AngularJS.	04	LO5
VI	MongoDB and Building REST API using MongoDB	Perform Any 2 from the following 1. Connect MongoDB withNode.js and perform CRUD operations. 2. Build a RESTful API using MongoDB. 3. Build a TypeScript REST API using MongoDB.	06	LO6

		1
		1
		1
		1

Text Books:

- 1. Learning Node.js Development, Andrew Mead, Packt Publishing
- 2. John Hebeler, Matthew Fisher, Ryan Blace, Andrew Perez -Lopez, "Semantic Web Programming", Wiley Publishing, Inc, 1st Edition, 2009.
- 3. Boris Cherny, "Programming TypeScript- Making Your Javascript Application Scale", O'Reilly Media Inc., 2019 Edition.
- 4. Adam Bretz and Colin J. Ihrig, "Full Stack JavaScript Development with MEAN", SitePoint Pty. Ltd., 2015 Edition.
- 5. Brad Dayley, Brendan Dayley, Caleb Dayley, "Node.js, MongoDB and Angular Web Development: The definitive guide to using the MEAN stack to build web applications", 2nd Edition, AddisonWesley Professional, 2018 Edition.

References:

- 1. Simon Holmes Clive Harber, "Getting MEAN with Mongo, Express, Angular, and Node", Manning Publications, 2019 Edition.
- 2. Yakov Fain and Anton Moiseev, "TypeScript Quickly", Manning Publications, 2020 Edition.
- 3. Dr. Deven Shah, "Advanced Internet Programming", StarEdu Solutions, 2019 Edition.
- 4. Ethan Brown ,Web Development with Node and Express', O'Reilly

Online Reference:

Sr. No.	Website Name
1.	https://www.w3schools.com.nodejs/
2.	https://www.tutorialspoint.com/mongodb/index.htm
3.	https://www.mongodb.com/basiks

Term Work: Term Work shall consist of at least 10 to 12 practicals based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus

Course Code	Canna Nama	Teaching Scheme (Contact Hours)			Credits assigned			
	Course Name	Theory	Practical	Tutorial	Theory	Practical/ Oral	Tutorial	Total

IoTCSBCL60 5	Mobile Application Security & Penetration Testing (SBL)		02			01		01	
-----------------	--	--	----	--	--	----	--	----	--

		Examination Scheme							
Course Code	Course Name	Theory Marks							
Course Code	Course Maine	Internal assessment			End	Term	Practical	Oral	Total
		Test1	Test 2	Avg. of 2 Tests	Sem. Exam	Work	Fractical	Orai	Total
IoTCSBCL60 5	Mobile Application Security & Penetration Testing (SBL)			-1		25	25	1	50

Lab Objectives:

Sr No	Lab Objectives
1	To get acquainted with the concept of Android application ecosystem and development tools
2	To learn the concepts of developing and deploying android based applications
3	To understand Android security models, tools and frameworks
4	To understand Mobile Penetration testing concepts and tools.
5	To understand modeling threats for an droid applications
6	To apply different attacks on android applications

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive Levels of Attainment as per Bloom's Taxonomy
Upon C	ompletion of the course the learner/student should be able to:	
1	Describe the basic concept of Mobile OS, architectures and development environments.	L1,L2
2	Interpret the android development process and develop android applications	L1,L2,L3
3	Interpret different security concepts in Android applications	L1,L2,L3
4	Understand the concepts of penetration testing in mobile environments	L1,L2,L3
5	Analyze and develop attack plans and threat models for mobile application	L1,L2,L3
6	Interpret and develop the different attacks on Android applications using case studies	L1,L2,L3,L4

Prerequisite: System Security basics, Network Security basics and Mobile Application Development.

DETAILED SYLLABUS

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Basics of security	Security attacks, vulnerabilities and OS and Network security	02	-
I	Fundamentals of Android Application Development	Different types of mobile applications platforms, Introduction of Android, features of Android, Android Application Architecture, Android Development Tools, Application packages (APK), Debug Bridge, Application sandboxing and signing, build process, and rooting, Application Manifest File, Android Application Lifecycle and Application Class. Self-Learning Topics: iOS architecture	02	LOI
II	Building android applications	Android Activity: Creating activities, Activity lifecycle and Android Activity classes. User Interface: Fundamental Android UI Design, Layouts, Fragments, Designing UI with views, Adapters, Linking Activities Using intents, Creating Intent Filters, Displaying notifications, and Broadcast Receivers, Content Providers and Database Connectivity Self-Learning Topics: Android Firebase Connectivity and various APIs	04	LO2
III	Basics of Mobile Application Security	Android permission model, key challenges in mobile application security, impact of mobile application security, Android vulnerabilities, The need for mobile application penetration testing, The mobile application penetration testing methodology, The OWASP mobile security project and risks. Self-Learning Topics: Basic Security attack, threats, risks and pentesting methods	03	LO3
IV	Building test environments and Mobile Pentesting tools	Android security tools: APKAnalyser, The drozer tool, APKTool, The dex2jar API, Androguard, QARK, MOBSF, Reversing the application. Mobile app penetration testing environment setup, Monkeyrunner, Genymotion. Self-Learning Topics: Other vulnerable android apps like AndroGoat, Damn Vulnerable Bank	03	LO4

V	Building Attack Paths – Threat Modeling an Application	Assets, Threats, Threat agents, Vulnerabilities, Risk, Approach to threat models. Threat modeling a mobile application: creating a threat model, Threat modeling methodologies, Using STRIDE to classify threats, A typical mobile application threat model, Building attack plans and attack trees, Threat model outcomes, Risk	06	LO5
		assessment. Self-Learning Topics: Threat Modeling Methodologies like OCTAVE, PASTA, VAST etc., Risk Analysis and Mobile Ransomware		
VI	Attacking Android Applications and Case Studies	Setting up the target app and analyzing the app using drozer, attacking android components, Attacking WebViews, SQL injection, Man-in-the-Middle (MitM) attacks, Encryption and decryption on the client side, Storage/archive analysis, Log analysis, Assessing implementation vulnerabilities, Binary patching. Attack case studies. Self-Learning Topics: Various Case studies on Mobile attacks and vulnerabilities	06	LO6

- 1. Møbile Application Penetration Testing, Vijay Kumar Velu, June 2017, Publisher(s): Packt publication, ISBN: 978-1-78588-337-8.
- 2. Mobile Application Hacker's Handbook, Dominic Chell, Tyrone Erasmus, Shaun Colley and Ollie Whitehouse, Wiley publication.
- 3. Learning Pentesting for Android Devices, Aditya Gupta, Packt Publication.

Reference:

1. Android Security Internals: An In-Depth Guide to Android's Security Architecture, Nikolay Elenkov, No Starch Press.

Online References:

- 1. https://nptel.ac.in/courses/106106147
- 2. Udemy courses:
- a. https://www.udemy.com/course/mobile-application-security-and-penetration-testing-e/
- b. https://www.udemy.com/course/android-penetration-testing-using-diva/
- c. https://www.udemy.com/course/advanced-mobile-penetration-testing-of-android-applications/
- 3. https://www.eccouncil.org/programs/certified-penetration-testing-professional-cpent/

List of Experiments.

- 1. To install and configure Android Studio / Genymotion and Implement simple Android apk.
- 2. Building Android applications User interfaces using various Views and Layouts.
- 3. Developing Android applications using Receivers and Content Providers.
- 4. Developing user interactive Database applications (Using SQLite or other) in Android.
- 5. Deploying and Publishing Android application.
- 6. Reversing Android applications (APKs) APKTOOL, dex2jar and JD-GUI
- 7. Implementation of Android Rooting using tools like SRSroot/iRoot/ Root Genius/ Kingo etc.
- 8. Android Security Analysis for Hardcoding issues and Insecure Data Storage using DIVA
- 9. Android Security Analysis for Input Validation and Access Control using DIVA
- 10. Android Manifest File Analysis and SDK Misuse detection using MobSF tool
- 11. Android Application component detection using MobSF tool
- 12. Android Dynamic Code Analysis
- 13. Insecure logging and Client-side injection
- 14. Modeling Threats in android using STRIDE
- 15. Android Security Case Studies (minimum Two)

Term Work: Term Work shall consist of at least 10 to 12 practicals based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus

Course Code	Course	Teaching (Contact			Credits A	Assigned		
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
IoTCSBCM601	Mini Project		04			02	/	02
	:2B							
	Blockchain &							
	Security							
	Model.							

Course	Course		Examination Scheme							
Code	Name	Inte	Theory Marks Internal assessment			Term Work	Pract.	Total		
		Test1	Test 2	Avg.	Sem. Exam	Term work	/Oral	Total		
IoTCSB CM601	Mini Project :2B Blockchain & Security Model.	-				25	25	50		

Course Objectives

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Course Outcome: Learner will be able to...

- 1. Identify problems based on societal /research needs.
- 2. Apply Knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/ experimental/simulations.
- 5. Analyse the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life long learning.
- 9. Demonstrate project management principles during project work.

Guidelines for Mini Project

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students hall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case by case basis.

Guidelines for Assessment of Mini Project:

Term Work

- The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- Distribution of Term work marks for both semesters shall be as below;

o Marks awarded by guide/supervisor based on log book : 10

o Marks awarded by review committee : 10

Quality of Project report
 : 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

One-year project:

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
 - First shall be for finalisation of problem
 - Second shall be on finalisation of proposed solution of problem.
- In second semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
 - First review is based on readiness of building working prototype to be conducted.

 Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

Half-year project:

- In this case in one semester students' group shall complete project in all aspects including,
 - o Identification of need/problem
 - Proposed final solution
 - o Procurement of components/systems
 - o Building prototype and testing
 - Two reviews will be conducted for continuous assessment,
 - First shall be for finalisation of problem and proposed solution
 - Second shall be for implementation and testing of solution.

Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication
- In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
- In case of **half year project** all criteria's in generic may be considered for evaluation of performance of students in mini project.

Guidelines for Assessment of Mini Project Practical/Oral Examination:

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader

8. Clarity in written and oral communication

Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					/Oral		
IoTCSBCDL	Enterprise	04			04			04
O6011	Network							
	Design							

Course Code	Course Name		Examination Scheme Theory Marks Practical/Oral					
		In	Internal assessment End Sem.				2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Total
		Test1	Test2	Avg. of two Tests	Exam			
IoTCSBCDL O6011	Enterprise Network Design	20	20	20	80	-	- -	100

Course Objectives:

Sr. No.	Course Objectives
The course	aims:

1	To be familiarized with the methodologies and approaches of the network design for an enterprise
	network.
2	To understand the network hierarchy and use modular approach to network design for an enterprise
	network.
3	To understand the campus design and data center design considerations for designing an enterprise
	campus.
4	To study Enterprise Edge WAN Technologies and design a WAN using them.
5	Designing an IP addressing plan and selecting a Route protocol for an enterprise network.
6	To design enterprise network for given user requirements in an application.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of
		attainment as per
		Bloom's Taxonomy
On success	aful completion, of course, learner/student will be able to:	
1	Understand the customer requirements and Apply a Methodology to design a	L1,L2,L3
	Network.	
2	Structure and Modularize the design for an enterprise network.	L6
3	Design Basic Campus and Data Center for an enterprise network.	L6
4	Design Remote Connectivity for an enterprise network.	L6
5	Design IP Addressing and Select suitable Routing Protocols for an enterprise	L6
	network.	
6	Explain SDN and its functioning.	L4,L5

Pre-requisite: Computer Networks

DETAIL SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mappin
				g
0	Pre-requisite	 OSI Reference Model and TCP/IP Protocol Suite Routing IP Addresses Internetworking Devices 	02	
I	Applying a Methodology to Network Design:	The Service Oriented Network Architecture, Network Design Methodology, Identifying Customer requirements, Characterizing the Existing Network and Sites, Using the Top- Down Approach to Network Design, The Design Implementation Process.	06	CO1
		Self-Learning Topics: Study the basic concepts of Top-down network design approach with real time application.		

II	Structuring and Modularizing the Network:	Network Hierarchy, Using a Modular Approach to Network Design, Services Within Modular Networks, Network Management Protocol: SNMP. Self-Learning Topics: Study different type of NMP protocols.	05	CO2
III	Designing Basic Campus and Data Center Networks	Campus Design Considerations, Enterprise Campus Design, Enterprise Data Center Design Considerations. Self-Learning Topics: Real time case study on Enterprise Data Center.	06	CO3
IV	Designing Remote Connectivity	Enterprise Edge WAN Technologies, WAN Transport Technologies, WAN Design, Using WAN Technologies, Enterprise Edge WAN and MAN Considerations, Enterprise Branch and Teleworker Design . Self-Learning Topics: Case study on WAN design.	06	CO4
V	Designing IP Addressing in the Network and Selecting Routing Protocols	Designing an IP Addressing Plan, Introduction to IPv6, Routing Protocol Features, Routing Protocols for the Enterprise, Routing Protocol Deployment, <i>Route</i> Redistribution, Route Filtering, Route Summarization Self-Learning Topics: Study of different routing protocols for Enterprise design.	10	CO5
VI	Software Defined Network	Understanding SDN and Open Flow: SDN Architecture – SDN Building Blocks, OpenFlow messages – Controller to Switch, Symmetric and Asynchronous messages, Implementing OpenFlow Switch, OpenFlow controllers, POX and NOX. Self-Learning Topics: Case study on SDN.	04	CO6

- 1. Authorized Self-Study Guide, Designing for Cisco Internetwork Solutions (DESGN), Second Edition, Cisco Press-Diane Teare.
- 2. Network Analysis, Architecture, and Design 3rd Edition, Morgan Kaufman, James D.
- 3. CCDA Cisco official Guide
- 4. Software Defined Networking with Open Flow: PACKT Publishing Siamak Azodolmolky

References Books:

- 1. Top-Down Network Design (Networking Technology) 3rd Edition, Priscilla Oppenheimer ,Cisco Press Book
- 2. Network Planning and Design Guide Paperback 2000, Shaun Hummel

Online References:

- 1. www.cisco.com
- 2. https://buildings.honeywell.com

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marksQ.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
IoTCSBCDL O6012	Application Security and Secure	03			03			03
	Coding Principles							

Course Code	Course Name	Examination Scheme						
		Theory Marks						
		Internal assessment		End	Term	Dreatical	Orol	Total
		Test1	Test 2	Avg. of 2 Sem. Work Practical Oral Exam	Total			

IoTCSBC DLO6012	Application Security and Secure Coding	20	20	20	80	 	 100
	Principles Principles						

Course Objectives:

Sr. No.	Course Objectives
The course	e aims:
1	To introduce the basic concepts of application security
2	To understand Security related to Operating Systems, Internet and Social Networking Sites
3	To Understand Email Communication & Mobile Device Security
4	To Understand Cloud and Network Security
5	To introduce the basic concepts of secure coding practices
6	To apply the knowledge of application security to safeguard an application

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of
		attainment as per Bloom's Taxonomy
On success	sful completion, of course, learner/student will be able to:	
1	Understand & identify different application security threats.	L1,L2
2	Analyze the Security related to Operating Systems, Internet and Social	L1,L2,L3,L4
	Networking Sites	
3	Understand the security aspects related to Email Communication & Mobile	L1,L2
	Device	
4	Understand Cloud and Network Security	L1,L2
5	Evaluate the different Secure Coding Practices	L1,L2,L3,L4,L5
6	Apply application security testing concepts to safeguard	L1,L2,L3

Prerequisite: Data Security and Crytography

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Data Security Fundamentals and cryptography	02	
I	Application Security	Web Application Security ,SQL Injection ,Forms and Scripts ,Cookies and Session Management ,General Attacks, Regular Application Security ,Running Privileges ,Application Administration ,Integration with OS Security ,Application Updates ,Spyware and Adware ,Network Access. Self-learning Topics: Remote Administration Security	08	CO1
II	Security related to Operating Systems, Internet and Social	Security Recommendations for Windows Operating Systems, Mac OS, Studying Web Browser Concepts, Immediate Messaging Security, Child Online Safety,	08	CO2

	Networking Sites	Self-learning Topics: Understanding Social Networking Concepts, and Facebook and		
III	Email	Twitter Security Settings Understanding Email Security Concepts,	06	CO3
111	Communication	Email Security Procedures, Knowing Mobile	00	CO3
	& Mobile Device	Device Security Concepts, Mobile Security		
	Security	Procedures, Understanding How to Secure		
	Security	iPhone, iPad, Android, and Windows		
		Devices		
		Self-learning Topics: How to Secure		
		iPhone, iPad, Android, and Windows		
		Devices		
IV	Embedded	Embedded Applications Security, Security of	07	CO4
	Application and	Embedded Applications Security		
	Cloud Security	Conclusions, Remote Administration		
		Security, Reasons for Remote		
		Administration, Remote Administration		
		Using a Web Interface, Authenticating Web-		
		Based Remote Administration, Custom		
		Remote Administration		
		Understanding Cloud Concepts, Securing		
		Against Cloud Security Threats, Addressing		
		Cloud Privacy Issues		
		Self-learning Topics: Understanding		
		Various Networking Concepts & Setting Up		
		a Wireless Network in Windows and Mac.		
		Understanding Wireless Network Security Countermeasures		
V	Secure Coding	Input Validation, Authentication and	04	CO5
•	Practices	Authorization, Cryptography, Session	U4	CO3
	Tractices	Management,		
		Self-learning Topics: Error Handling		
VI	Application	Introduction Application Security Testing,	04	CO6
'-	Security Testing	Different Application Security Testing –		
	a starty a country	SAST, DAST, IAST, MAST.		
		Self-learning Topics: Cross-Site Scripting		
		Issues ,SQL Injection Attacks		

- 1. Nina Godbole, "Information Systems Security", Wiley Publication
- 2. Robert Bragg, Mark Rhodes-ousley, Keith Strasssberg "The complete reference Network Security" TMH, 2004

References Books:

- 1. Mark G. Graff, Kenneth R. van Wyk, "Secure Coding: Principles and Practices", O'Reilly Media, Inc
- 2. William (Chuck) Easttom II, "Computer Security Fundamentals, 4th Edition", Pearson publication

Online References:

- 1. https://nptel.ac.in/courses/106106146
- 2. https://www.coursera.org/specializations/secure-coding-practices?
- 3. https://www.coursera.org/learn/systems-application-security-sscp

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marksQ.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical/ Oral	Tutorial	Total
IoTCSBCDLO601	Ethical hacking and digital forensics	03			03			03

Course Code	Course Name		Examination Scheme						
			Theory Marks						
		Int	ernal asse	essment	End	Term	Practical	Oral	Total
		Test1	Test 2	Avg. of 2 Tests	Sem. Exam	Work	Tractical	Orai	Total
IoTCSBCD LO6013	Ethical hacking and digital forensics	20	20	20	80			3	100

Course Objectives:

Sr. No.	Course Objectives
The course	aims:
1	To understand ethical hacking and different phases of an attack
2	To learn various tools used for hacking
3	To understand various steps involved in the Digital Forensics Methodology
4	To learn about the Digital Forensic Data Acquisition
5	To learn about Digital Forensic Investigation and Analysis
6	To learn about the steps involved in creating an investigation report

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succes	sful completion, of course, learner/student will be able to:	
1	Define the concept of ethical hacking and explore different phases in ethical hacking	L1,L2
2	Examine different tools for hacking and penetration testing	L1,L2,L3
3	Understand the need for Digital Forensics and its Life Cycle	L1,L2
4	Implement various Digital Forensic techniques to acquire a forensically sound copy of evidence	L1,L2,L3
5	Analyze the various pieces of evidence acquired after applying various forensic tools	L1,L2,L3,L4
6	Compile a detailed Forensic report after completing a forensic investigation	L6

Prerequisite:

- 1) Computer Networks
- 2) Cryptography and System Security

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Computer Networks, cryptography and system security	02	
I	Computer Networks	Introduction to Ethical Hacking: Introduction to Ethical Hacking. Hacker Classifications: The Hats. Phases of Hacking. Introduction to footprinting, footprinting tools. Scanning methodology and tools. Enumeration techniques and enumeration tools. Self-learning Topics: OWASP top 10 Attacks	06	CO1
II	Computer Networks	Introduction to penetration testing: System hacking, hacking tools, Introduction to penetration testing and social engineering, Phases of penetration testing. Self-learning Topics: Google Hacking (GHDB) and Doxing	04	CO2
III		Digital Forensics and Incident Response: Introduction to Digital Forensics and Digital Evidence, The Need for Digital Forensics, Types of Digital Forensics, Digital Forensics Life Cycle. Incident and Initial Response: Introduction to Computer Security Incident, Goals of Incident response, Incident Response Methodology, Initial Response, Formulating Response Strategy. Self-learning Topics: New Challenges of Digital Forensic Investigations	07	CO3
IV		Forensic Duplication and Acquisition: Forensic Duplication: Introduction to Forensic Duplication, Types of Forensic Duplicates, Introduction to Forensic Duplication Tools. Data Acquisition: Introduction to Static and Live/Volatile Data, Static Data Acquisition from Windows (FTK Imager), Static Data Acquisition from Linux (dd/dcfldd), Live Data Acquisition from Windows (FTK Imager). Network Forensics (wireshark) Self-learning Topics: Open and Proprietary Tools for Digital Forensics, Network Forensic Tools	07	CO4
V		Forensic Investigation and Analysis: Investigating Registry Files, Investigating Log Files, Data Carving (Bulk Extractor), Introduction to Forensic Analysis, Live Forensic Analysis, Forensic Analysis of acquired data in Linux, Forensic Analysis of acquired data in Windows Self-learning Topics: Open and Proprietary Tools for Forensics Investigation	07	CO5
VI		Evidence Handling and Forensic Reporting: Evidence Handling: Faraday's Bag, Characteristics of an Evidence, Types of Evidence, Evidence Handling Methodology,	06	CO6

Chain of Custody. Forensic Reporting: Goals of a Report, Layout of an Investigative Report, Guidelines for writing a report, Sample	
Forensic Report Self-learning Topics: Case Study on Real Life Incidents.	

- 1. EC-Council "Ethical Hacking and Countermeasures Attack Phases", Cengage Learning
- 2. Computer Security Principles and Practice, William Stallings, Sixth Edition, Pearson Education
- 3. Build your own Security Lab, Michael Gregg, Wiley India

References:

- 1. Kevin Smith, "Hacking How to Hack The ultimate Hacking Guide", Hacking Intelligence
- 2. Kevin Beaver, "Hacking for dummies" Wiley publication
- 3. Incident Response & Computer Forensics by Kevin Mandia, Chris Prosise, Wiley
- 4. Digital Forensics by Nilakshi Jain & Kalbande, Wiley

Online References:

- 2. https://freevideolectures.com/course/4070/nptel-ethical-hacking
- 3. https://owasp.org/www-project-top-ten/
- 4. https://www.computersecuritystudent.com/
- 5. http://www.opentechinfo.com/learn-use-kali-linux/
- 6. https://pentesterlab.com
- 7. https://www.exploit-db.com/google-hacking-database

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marksQ.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered.

Course Code	Course	Theory	Practical	Tutorial	Theory	Practical/	Tutorial	Total
	Name				\ '	Oral		
IoTCSBCDLO601	Virtualization and Cloud Security	03			03			03

		Examination Scheme						
Course Code	Course Name	The Internal as	eory Marks	End	Torm			
Code		Test Test 2	Avg. of 2 Tests	End Sem. Exam	Term Work	Practical	Oral	Total
IoTCSBCD LO6014	Virtualization and Cloud Security	20 20	20	80				100

Course Objectives:

Sr. No.	Course Objectives
The course	e aims:
1	To understand Virtualization
2	To learn various tools used for Virtualization
3	To understand various steps involved in the Virtualization
4	To learn about different trends in cloud computing
5	To learn about Data Security in Cloud
6	To learn about Identity and Access Management in Cloud

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy			
On success	On successful completion, of course, learner/student will be able to:				
1	Define the concept of Virtualization and explore different tools in Virtualization	L1,L2,L3			
2	Examine different types for Virtualization	L1,L2			

3	Understand the need for Cloud Security	L1,L2
4	Implement various Data security techniques in cloud security	L1,L2,L3
5	Implement various Access Management techniques in cloud security	L1,L2,L3
6	Understand different trends in cloud computing	L1,L2

Prerequisite: Computer Networks, Cryptography and System Security

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Computer Networks, cryptography and	02	
I	Introduction to Cloud Computing	system security Definition, Characteristics, Components, Cloud Deployment Models, NIST Architecture of Cloud Computing, Advantages of Cloud Computing, Cloud Computing Challenges. Identification of frames in cloud. Public, Private, Hybrid,	04	CO1
		Self-Learning Topics: Case study on different types of cloud ie private, public etc.		
П	Introduction to Virtualization	Introduction, Characteristics of Virtualization, Full Virtualization, Para virtualization, Hardware-Assisted Virtualization, Operating System Virtualization, Application Server Virtualization, Application Virtualization, Network Virtualization, Storage Virtualization, Service Virtualization Computing Platforms: Amazon Web Services (AWS) EC2 ,S3, Google App Engine, Microsoft Azure etc. Self-Learning Topics: Study different AWS services.	06	CO1
III	Virtualization	Hypervisors: Hosted Structure (Type II Hypervisor) Bare-metal Structure (Type I Hypervisor) Implementation Levels of Virtualization Resource Virtualization CPU Virtualization, Memory Virtualization, Device and I/O Virtualization Technology Examples KVM Architecture, Xen Architecture, VMWare, Hyper-V Self-Learning Topics: Case study on virtualization	08	CO2

IV	Cloud Security	Risks in Cloud Computing: Introduction, Risk Management, Cloud Impact, Enterprise-Wide, Risk Management, Risks internal and external in Cloud Computing Cloud Security Services: Security Authorization Challenges in the Cloud, Secure Cloud Software Requirements, Content level security. Cloud Hosting risks, Self-Learning Topics: Case study on Cloud Security.	06	CO3
V	Data Security in Cloud	Introduction, Current state, Data Security. Application Security in Cloud, Security in IaaS Environment, Security in PaaS Environment, Security in SaaS Environment, Cloud Service Reports by CPS, Security for Virtualization Software, Host Security in PasS, SaaS and IaaS, Security as a Service, Benefits of SaaS, Challenges with SaaS, Identity Management as a Service (Id MaaS). Security related to storage. Self-Learning Topics: Study various benefits of Maas, SaaS, PaaS and Iaas	07	CO4 CO5
VI	Future Cloud Computing	Mobile Cloud Computing Autonomic Cloud Computing Multimedia Cloud Energy aware Cloud computing Jungle Computing. Case study on upcoming cloud computing area Self-Learning Topics: Case study on future in cloud computing.	06	CO6

- $1\)\ Cloud\ Computing\ and\ Services\ , Arup\ Vithal\ |\ Bhushan\ Jadhav,\ StarEdu\ Solutions,\ SYBGEN\ Learning\ India\ Pvt.\ Ltd$
- 2) Cloud Computing: A Practical Approach for Learning and Implementation, A. Srinivasan, J., Suresh, Pearson.
- 3) Cloud Computing and Virtualization, Dac-Nhuong Le, Raghvendra Kumar, Wiley & Sons
- 4) Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Ronald L. Krutz Russell Dean Vines, Wiley & Sons.

Reference Books:

- 1. Cloud Computing Black Book , Kailash Jayaswal , Dreamtech Publication.
- 2. MASTERING CLOUD COMPUTING, "BUYYA" Tata Mcgraw Hill publication

3. CLOUD COMPUTING A PRACTICAL APPROACH, "VELTE", Tata Mcgraw Hill publication

Online References:

- 1. https://docs.aws.amazon.com/
- 2. https://docs.microsoft.com/en-us/azure
- 3. https://docs.docker.com/get-started/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marksQ.1 will be compulsory and should cover maximum contents of the syllabus
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered.